STARNet: A Deep-Learning Algorithm for Surface Shortwave Radiation Retrieval From Fengyun-4A

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Mengmeng Song, Dazhi Yang, Hongrong Shi, Yun Chen, Bai Liu, Yanbo Shen, Zijing Ding, Xiang'ao Xia
{"title":"STARNet: A Deep-Learning Algorithm for Surface Shortwave Radiation Retrieval From Fengyun-4A","authors":"Mengmeng Song,&nbsp;Dazhi Yang,&nbsp;Hongrong Shi,&nbsp;Yun Chen,&nbsp;Bai Liu,&nbsp;Yanbo Shen,&nbsp;Zijing Ding,&nbsp;Xiang'ao Xia","doi":"10.1029/2025GL116237","DOIUrl":null,"url":null,"abstract":"<p>Satellite-retrieved surface shortwave radiation is indispensable to solar energy meteorology applications. In stark contrast to conventional irradiance retrieval algorithms that are confined to individual pixel information, this work proposes the STARNet (Spatio-Temporal Association-based Retrieval Network), which is a deep-learning algorithm that exploits the information embedded in the spatio-temporal neighbors of a target pixel. The algorithm holds three technical innovations: (a) a data preprocessing method that highlights the correlation- and causality-type climatology associations in the original reflectance and brightness temperature observations; (b) a graph network cascade that extracts topological spatio-temporal features, and (c) a multi-scale convolution network that extracts regular spatio-temporal features. The empirical part of this work showcases irradiance retrieval from Fengyun-4A over China. True out-of-sample verification demonstrates that STARNet can outperform physical and conventional data-driven retrieval algorithms. Most importantly, STARNet is exceedingly general and thus applicable to many other retrieval tasks, such as those for aerosols or clouds.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 13","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL116237","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025GL116237","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Satellite-retrieved surface shortwave radiation is indispensable to solar energy meteorology applications. In stark contrast to conventional irradiance retrieval algorithms that are confined to individual pixel information, this work proposes the STARNet (Spatio-Temporal Association-based Retrieval Network), which is a deep-learning algorithm that exploits the information embedded in the spatio-temporal neighbors of a target pixel. The algorithm holds three technical innovations: (a) a data preprocessing method that highlights the correlation- and causality-type climatology associations in the original reflectance and brightness temperature observations; (b) a graph network cascade that extracts topological spatio-temporal features, and (c) a multi-scale convolution network that extracts regular spatio-temporal features. The empirical part of this work showcases irradiance retrieval from Fengyun-4A over China. True out-of-sample verification demonstrates that STARNet can outperform physical and conventional data-driven retrieval algorithms. Most importantly, STARNet is exceedingly general and thus applicable to many other retrieval tasks, such as those for aerosols or clouds.

Abstract Image

STARNet:一种基于深度学习的风云- 4a地面短波辐射反演算法
卫星反演地表短波辐射是太阳能气象应用中不可缺少的一部分。与局限于单个像素信息的传统辐照度检索算法形成鲜明对比的是,这项工作提出了STARNet(时空关联检索网络),这是一种深度学习算法,利用嵌入在目标像素的时空邻居中的信息。该算法有三个技术创新:(a)一种数据预处理方法,突出了原始反射率和亮度温度观测中的相关和因果型气候学关联;(b)提取拓扑时空特征的图网络级联,以及(c)提取规则时空特征的多尺度卷积网络。本文的实证部分展示了风云- 4a在中国上空的辐照度反演。真实的样本外验证表明,STARNet可以优于物理和传统的数据驱动检索算法。最重要的是,STARNet非常通用,因此适用于许多其他检索任务,例如气溶胶或云。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信