Pooja Anantha, Xiangdong Wu, Salaheldeen Elsaid, Piyush Raj, Junkai Hu, Ishan Barman, Sui Seng Tee
{"title":"Sweet Science: Exploring the Impact of Fructose and Glucose on Brown Adipocyte Differentiation Using Optical Diffraction Tomography","authors":"Pooja Anantha, Xiangdong Wu, Salaheldeen Elsaid, Piyush Raj, Junkai Hu, Ishan Barman, Sui Seng Tee","doi":"10.1002/jcb.70052","DOIUrl":null,"url":null,"abstract":"<p>The thermogenic capacity of brown adipose tissue (BAT) has garnered much attention for its potential to regulate systemic energy balance. BAT depot size and function need to be tightly regulated to prevent loss of metabolic homeostasis due to energy dissipation via non-shivering thermogenesis. While adipocyte-intrinsic mechanisms controlling thermogenesis are critical, an increasing appreciation for the role of the BAT microenvironment is emerging. For example, changes in circulating hexoses due to dietary intake have shown to impact BAT function. Here, we show that murine BAT preadipocytes metabolism is impacted when fructose is used as the sole carbon source. Similarly, differentiation medium containing only fructose yield mature adipocytes with fewer lipid droplets, with a concomitant decrease in adipogenic genes. These deficiencies are also observed in human BAT preadipocytes, where cutting-edge optical imaging modalities show a decrease in total cell mass and lipid mass in fructose-only medium. Taken together, the metabolic microenvironment significantly impacts BAT growth and function, with implications for the role of diets potentially mitigating the efficacy of BAT-targeted therapies.</p>","PeriodicalId":15219,"journal":{"name":"Journal of cellular biochemistry","volume":"126 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcb.70052","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cellular biochemistry","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcb.70052","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The thermogenic capacity of brown adipose tissue (BAT) has garnered much attention for its potential to regulate systemic energy balance. BAT depot size and function need to be tightly regulated to prevent loss of metabolic homeostasis due to energy dissipation via non-shivering thermogenesis. While adipocyte-intrinsic mechanisms controlling thermogenesis are critical, an increasing appreciation for the role of the BAT microenvironment is emerging. For example, changes in circulating hexoses due to dietary intake have shown to impact BAT function. Here, we show that murine BAT preadipocytes metabolism is impacted when fructose is used as the sole carbon source. Similarly, differentiation medium containing only fructose yield mature adipocytes with fewer lipid droplets, with a concomitant decrease in adipogenic genes. These deficiencies are also observed in human BAT preadipocytes, where cutting-edge optical imaging modalities show a decrease in total cell mass and lipid mass in fructose-only medium. Taken together, the metabolic microenvironment significantly impacts BAT growth and function, with implications for the role of diets potentially mitigating the efficacy of BAT-targeted therapies.
期刊介绍:
The Journal of Cellular Biochemistry publishes descriptions of original research in which complex cellular, pathogenic, clinical, or animal model systems are studied by biochemical, molecular, genetic, epigenetic or quantitative ultrastructural approaches. Submission of papers reporting genomic, proteomic, bioinformatics and systems biology approaches to identify and characterize parameters of biological control in a cellular context are encouraged. The areas covered include, but are not restricted to, conditions, agents, regulatory networks, or differentiation states that influence structure, cell cycle & growth control, structure-function relationships.