Cover Image, Volume 7, Number 6, June 2025

IF 24.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Carbon Energy Pub Date : 2025-06-30 DOI:10.1002/cey2.70059
Jaemin Park, Jin Hyeong Rhee, Youngeun Kim, Min Jae Kim, Junbeom Park, Sunil V. Barma, Jun Ho Seok, Sang Uck Lee, Eul-Yong Shin, Dong Su Kim, Hyung Koun Cho, Jin Young Kim, Sae Byeok Jo, Hae Jung Son, Wooseok Yang
{"title":"Cover Image, Volume 7, Number 6, June 2025","authors":"Jaemin Park,&nbsp;Jin Hyeong Rhee,&nbsp;Youngeun Kim,&nbsp;Min Jae Kim,&nbsp;Junbeom Park,&nbsp;Sunil V. Barma,&nbsp;Jun Ho Seok,&nbsp;Sang Uck Lee,&nbsp;Eul-Yong Shin,&nbsp;Dong Su Kim,&nbsp;Hyung Koun Cho,&nbsp;Jin Young Kim,&nbsp;Sae Byeok Jo,&nbsp;Hae Jung Son,&nbsp;Wooseok Yang","doi":"10.1002/cey2.70059","DOIUrl":null,"url":null,"abstract":"<p><b><i>Front cover image</i></b>: Practical green hydrogen production requires efficient, low-cost, nontoxic materials integrated into simple device architectures. However, achieving high solar-to-hydrogen (STH) efficiency using solely earth-abundant materials in the overall device remains a critical bottleneck. In article number CEY2706, Park et al. report a solar hydrogen production system with over 10% STH efficiency under unbiased conditions. The device combines a Se-incorporated Ni3S2 electrocatalyst with a ternary bulk heterojunction organic semiconductor composed of PM6, D18, and L8-BO. Ternary absorber enables tailored photovoltage and enhanced photocurrent by suppressing non-radiative decay pathways. Effective integration of the catalyst and light absorber offers a simple and effective route for benchmark-efficiency solar hydrogen production using earth-abundant materials.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 6","pages":""},"PeriodicalIF":24.2000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.70059","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.70059","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Front cover image: Practical green hydrogen production requires efficient, low-cost, nontoxic materials integrated into simple device architectures. However, achieving high solar-to-hydrogen (STH) efficiency using solely earth-abundant materials in the overall device remains a critical bottleneck. In article number CEY2706, Park et al. report a solar hydrogen production system with over 10% STH efficiency under unbiased conditions. The device combines a Se-incorporated Ni3S2 electrocatalyst with a ternary bulk heterojunction organic semiconductor composed of PM6, D18, and L8-BO. Ternary absorber enables tailored photovoltage and enhanced photocurrent by suppressing non-radiative decay pathways. Effective integration of the catalyst and light absorber offers a simple and effective route for benchmark-efficiency solar hydrogen production using earth-abundant materials.

Abstract Image

封面图片,第七卷,第六期,2025年6月
封面图片:实际的绿色制氢需要高效、低成本、无毒的材料集成到简单的设备架构中。然而,在整个设备中仅使用地球上丰富的材料来实现高太阳能制氢效率仍然是一个关键的瓶颈。在CEY2706号文章中,Park等人报道了一种在无偏条件下STH效率超过10%的太阳能制氢系统。该器件将含硒Ni3S2电催化剂与由PM6、D18和L8-BO组成的三元体异质结有机半导体相结合。三元吸收剂通过抑制非辐射衰减途径实现定制光电压和增强光电流。催化剂和光吸收剂的有效整合为利用地球上丰富的材料实现基准效率的太阳能制氢提供了一条简单而有效的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信