Frédéric A. C. Le Moigne, Katsiaryna Pabortsava, María Villa-Alfageme, Nathan Briggs, Chelsey A. Baker, Heather A. Bouman, Chance J. English, Sabena Blackbird, Stephanie A. Henson, Hugh Venables, Craig A. Carlson, C. Mark Moore, Jack Williams, Adrian P. Martin
{"title":"Particle Export Fluxes in the Southern Ocean: Importance of Nonheterotrophic Processes in POC Flux Attenuation","authors":"Frédéric A. C. Le Moigne, Katsiaryna Pabortsava, María Villa-Alfageme, Nathan Briggs, Chelsey A. Baker, Heather A. Bouman, Chance J. English, Sabena Blackbird, Stephanie A. Henson, Hugh Venables, Craig A. Carlson, C. Mark Moore, Jack Williams, Adrian P. Martin","doi":"10.1029/2024JC021607","DOIUrl":null,"url":null,"abstract":"<p>The ocean contributes to regulating atmospheric CO<sub>2</sub> levels via the biological carbon pump (BCP). One critical aspect of the BCP is the depth at which sinking particulate organic carbon (POC) remineralizes in the mesopelagic zone (200–1,000 m). In the Southern Ocean, the circulation is such that the products generated from POC remineralization may have drastically different fates depending on (a) the latitude at which sinking particulate material is produced and (b) the depth at which its remineralization occurs. Here, we assess latitudinal and depth variations of POC export marine aggregate abundance and composition in the Southeast Pacific sector of the Southern Ocean. We show changes in flux attenuation depth horizons in the upper mesopelagic in the subantarctic zone. These correspond to rapid particle accumulation below the depth of the euphotic zone followed by abrupt export. We believe that such rapid changes may be linked to diatom life cycles, including resting cell and spore formation and resulting changes in particle sinking velocities rather than attenuation due to heterotrophic degradation or solubilization in the upper mesopelagic zone. We further discuss the occurrence of such features in the Southern Ocean and at the global scale. Our results highlight the importance of alternative flux attenuation processes, such as sudden changes in particles sinking velocities, in explaining variability in organic carbon sequestration by the ocean's BCP.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 7","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC021607","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021607","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
The ocean contributes to regulating atmospheric CO2 levels via the biological carbon pump (BCP). One critical aspect of the BCP is the depth at which sinking particulate organic carbon (POC) remineralizes in the mesopelagic zone (200–1,000 m). In the Southern Ocean, the circulation is such that the products generated from POC remineralization may have drastically different fates depending on (a) the latitude at which sinking particulate material is produced and (b) the depth at which its remineralization occurs. Here, we assess latitudinal and depth variations of POC export marine aggregate abundance and composition in the Southeast Pacific sector of the Southern Ocean. We show changes in flux attenuation depth horizons in the upper mesopelagic in the subantarctic zone. These correspond to rapid particle accumulation below the depth of the euphotic zone followed by abrupt export. We believe that such rapid changes may be linked to diatom life cycles, including resting cell and spore formation and resulting changes in particle sinking velocities rather than attenuation due to heterotrophic degradation or solubilization in the upper mesopelagic zone. We further discuss the occurrence of such features in the Southern Ocean and at the global scale. Our results highlight the importance of alternative flux attenuation processes, such as sudden changes in particles sinking velocities, in explaining variability in organic carbon sequestration by the ocean's BCP.