Front Cover: AI.zymes – A Modular Platform for Evolutionary Enzyme Design (Angew. Chem. 27/2025)

Lucas P. Merlicek, Jannik Neumann, Abbie Lear, Vivian Degiorgi, Moor M. de Waal, Tudor-Stefan Cotet, Prof. Adrian J. Mulholland, Dr. H. Adrian Bunzel
{"title":"Front Cover: AI.zymes – A Modular Platform for Evolutionary Enzyme Design (Angew. Chem. 27/2025)","authors":"Lucas P. Merlicek,&nbsp;Jannik Neumann,&nbsp;Abbie Lear,&nbsp;Vivian Degiorgi,&nbsp;Moor M. de Waal,&nbsp;Tudor-Stefan Cotet,&nbsp;Prof. Adrian J. Mulholland,&nbsp;Dr. H. Adrian Bunzel","doi":"10.1002/ange.202512748","DOIUrl":null,"url":null,"abstract":"<p>Enzymes are powerful catalysts. Unfortunately, computational enzyme design remains challenging. In their Research Article, H. Adrian Bunzel and co-workers develop AI.zymes (e202507031), a modular platform integrating state-of-the-art computational tools through evolutionary design. AI.zymes boost enzymes by optimizing biocatalytic features such as transition-state binding, protein stability, and electrostatic catalysis. Its modular architecture will facilitate the integration of emerging design algorithms and enable addressing diverse design challenges.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 27","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202512748","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202512748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Enzymes are powerful catalysts. Unfortunately, computational enzyme design remains challenging. In their Research Article, H. Adrian Bunzel and co-workers develop AI.zymes (e202507031), a modular platform integrating state-of-the-art computational tools through evolutionary design. AI.zymes boost enzymes by optimizing biocatalytic features such as transition-state binding, protein stability, and electrostatic catalysis. Its modular architecture will facilitate the integration of emerging design algorithms and enable addressing diverse design challenges.

Abstract Image

封面:AI。zymes -进化酶设计的模块化平台。化学27/2025)
酶是强大的催化剂。不幸的是,计算酶设计仍然具有挑战性。在他们的研究文章中,H. Adrian Bunzel和同事开发了人工智能。Zymes (e202507031),一个模块化平台,通过进化设计集成了最先进的计算工具。人工智能。酶通过优化生物催化特性,如过渡态结合、蛋白质稳定性和静电催化来增强酶。其模块化架构将促进新兴设计算法的集成,并能够解决各种设计挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信