Strong-Flavor Baijiu Pit Mud Microbiome in the Context of Modern Industry: From a Black Box Under Empiricism to the Gradual Revelation of Microbial Ecosystems
{"title":"Strong-Flavor Baijiu Pit Mud Microbiome in the Context of Modern Industry: From a Black Box Under Empiricism to the Gradual Revelation of Microbial Ecosystems","authors":"Jun-Lan Mei, Li-Juan Chai, Zhen-Ming Lu, Xiao-Juan Zhang, Yun-Hao Lu, Yuan-Long Chi, Song-Tao Wang, Cai-Hong Shen, Jin-Song Shi, Zheng-Hong Xu","doi":"10.1111/1541-4337.70224","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Chinese strong-flavor Baijiu (CSFB), one of the most popular categories in the alcoholic beverage market, is supposed to comply with the current industry development trend and achieve mechanization, modernization, and unification of production. Solid-state fermentation in the mud cellar is the fundamental characteristic of CSFB. Pit mud, which provides the necessary conditions for producing the precursors of crucial flavor substances, plays a decisive role in CSFB's characteristics and quality. How to intervene and regulate the microbiome of pit mud, either using top-down or bottom-up approaches, to ultimately obtain an ecosystem that consistently provides the characteristic flavor substances in unified, standard, and mechanized production has become an urgent problem to be solved. This review summarizes the current knowledge of the pit mud microbiome in Baijiu fermentation, focusing on evolution and assembly patterns, functional roles, and ecological succession over batch-to-batch fermentation for decades or even centuries. Key challenges are identified, including controlling microbial interactions and enabling standardized, large-scale production of microbiome adaptations. This review also explores the application of advanced techniques such as omics tools and synthetic community design to improve microbiome regulation. We hold the view that the understanding of pit mud microbial ecosystems combined with technological advances provides an opportunity for intelligent microbiome management. By utilizing these tools, the production of CSFB can move in the direction of more consistent flavor and better quality control, with the potential for significant improvements in microbial engineering and industrial practices.</p>\n </div>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 4","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Reviews in Food Science and Food Safety","FirstCategoryId":"97","ListUrlMain":"https://ift.onlinelibrary.wiley.com/doi/10.1111/1541-4337.70224","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chinese strong-flavor Baijiu (CSFB), one of the most popular categories in the alcoholic beverage market, is supposed to comply with the current industry development trend and achieve mechanization, modernization, and unification of production. Solid-state fermentation in the mud cellar is the fundamental characteristic of CSFB. Pit mud, which provides the necessary conditions for producing the precursors of crucial flavor substances, plays a decisive role in CSFB's characteristics and quality. How to intervene and regulate the microbiome of pit mud, either using top-down or bottom-up approaches, to ultimately obtain an ecosystem that consistently provides the characteristic flavor substances in unified, standard, and mechanized production has become an urgent problem to be solved. This review summarizes the current knowledge of the pit mud microbiome in Baijiu fermentation, focusing on evolution and assembly patterns, functional roles, and ecological succession over batch-to-batch fermentation for decades or even centuries. Key challenges are identified, including controlling microbial interactions and enabling standardized, large-scale production of microbiome adaptations. This review also explores the application of advanced techniques such as omics tools and synthetic community design to improve microbiome regulation. We hold the view that the understanding of pit mud microbial ecosystems combined with technological advances provides an opportunity for intelligent microbiome management. By utilizing these tools, the production of CSFB can move in the direction of more consistent flavor and better quality control, with the potential for significant improvements in microbial engineering and industrial practices.
期刊介绍:
Comprehensive Reviews in Food Science and Food Safety (CRFSFS) is an online peer-reviewed journal established in 2002. It aims to provide scientists with unique and comprehensive reviews covering various aspects of food science and technology.
CRFSFS publishes in-depth reviews addressing the chemical, microbiological, physical, sensory, and nutritional properties of foods, as well as food processing, engineering, analytical methods, and packaging. Manuscripts should contribute new insights and recommendations to the scientific knowledge on the topic. The journal prioritizes recent developments and encourages critical assessment of experimental design and interpretation of results.
Topics related to food safety, such as preventive controls, ingredient contaminants, storage, food authenticity, and adulteration, are considered. Reviews on food hazards must demonstrate validity and reliability in real food systems, not just in model systems. Additionally, reviews on nutritional properties should provide a realistic perspective on how foods influence health, considering processing and storage effects on bioactivity.
The journal also accepts reviews on consumer behavior, risk assessment, food regulations, and post-harvest physiology. Authors are encouraged to consult the Editor in Chief before submission to ensure topic suitability. Systematic reviews and meta-analyses on analytical and sensory methods, quality control, and food safety approaches are welcomed, with authors advised to follow IFIS Good review practice guidelines.