Linrui Duan, Juchen Zhang, Mataz Alcoutlabi, Hongtao Sun
{"title":"Tailoring Gel Polymer Electrolytes for Advancing Quasi-Solid-State Batteries","authors":"Linrui Duan, Juchen Zhang, Mataz Alcoutlabi, Hongtao Sun","doi":"10.1002/admi.202401028","DOIUrl":null,"url":null,"abstract":"<p>Gel polymer electrolytes (GPEs) have attracted considerable attention due to their advantageous properties, such as uniform lithium deposition, stable solid electrolyte interphase (SEI) formation, nontoxicity, nonflammability, and leak-proof characteristics. In this study, a polyvinylidene fluoride hexafluoropropylene copolymer (PVDF-HFP)-based gel polymer electrolyte is synthesized via photo-polymerization, with a focus on examining the effects of curing time on electrolyte performance. The findings reveal that UV irradiation conditions significantly influence key material and electrochemical properties of the GPEs, including lithium-ion transference number, ionic conductivity, crystallinity, morphology, and liquid electrolyte uptake. Notably, the GPE cured for 120 s exhibited optimized performance, achieving an ionic conductivity of 1.10 mS cm<sup>−1</sup> at room temperature, an expanded electrochemical voltage window of 4.38 V, and a lithium-ion transference number of 0.50. This optimized GPE enabled long-term Li plating/stripping in a Li//Li symmetric cell and demonstrated stably cycling performance in both half-cell and full-cell configurations. Overall, this study highlights the critical role of crosslinking in regulating the electrochemical performance of GPEs and provides valuable insights for the development of high-performance GPE-based quasi-solid-state batteries.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 12","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202401028","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202401028","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Gel polymer electrolytes (GPEs) have attracted considerable attention due to their advantageous properties, such as uniform lithium deposition, stable solid electrolyte interphase (SEI) formation, nontoxicity, nonflammability, and leak-proof characteristics. In this study, a polyvinylidene fluoride hexafluoropropylene copolymer (PVDF-HFP)-based gel polymer electrolyte is synthesized via photo-polymerization, with a focus on examining the effects of curing time on electrolyte performance. The findings reveal that UV irradiation conditions significantly influence key material and electrochemical properties of the GPEs, including lithium-ion transference number, ionic conductivity, crystallinity, morphology, and liquid electrolyte uptake. Notably, the GPE cured for 120 s exhibited optimized performance, achieving an ionic conductivity of 1.10 mS cm−1 at room temperature, an expanded electrochemical voltage window of 4.38 V, and a lithium-ion transference number of 0.50. This optimized GPE enabled long-term Li plating/stripping in a Li//Li symmetric cell and demonstrated stably cycling performance in both half-cell and full-cell configurations. Overall, this study highlights the critical role of crosslinking in regulating the electrochemical performance of GPEs and provides valuable insights for the development of high-performance GPE-based quasi-solid-state batteries.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.