Gaohan Li , Lirui Mao , Ling Zhang, Qiaoli Wu, Hanxu Li
{"title":"Synergetic mechanism between corn stalk biochar and coal pulping in coal-water slurry","authors":"Gaohan Li , Lirui Mao , Ling Zhang, Qiaoli Wu, Hanxu Li","doi":"10.1016/j.cjche.2025.03.011","DOIUrl":null,"url":null,"abstract":"<div><div>The multipath application of green resources needs to be realised under the carbon neutrality goal. Worldwide, biomass is a resource in urgent need of treatment. In this paper, corn stover biomass (YM) or biochar with different particle sizes (YMF or YMX) was added during the preparation of coal-water slurry to investigate its effect on the performance of coal-water slurry and the micro-mechanism. The results showed that the fixed viscosity concentration of coal-water slurry (CYWS) with YM was only 47.42%, and the flowability was 49.9 mm, which made the slurry performance poor. The fixed viscosity concentration of coal-water slurry (CFWS) blended with YMF and coal-water slurry (CXWS) blended with YMX increased by 10.41% and 14.24%, respectively, compared with CYWS. Meanwhile, CXWS had the lowest thixotropy and yield stress, with a yield stress of only 16.13 Pa, which was 77.31 Pa lower than that of CYWS. This indicates that YMX treated by charring and milling is more favorable to be blended with coal to prepare coal-water slurry. This is due to the enhanced hydrophilicity and electronegativity of YMX. The enhanced hydrophilicity reduces the tendency to form three-dimensional networks in coal-water slurry, while the enhanced electronegativity improves the electrostatic repulsion between particles, which is beneficial to the dispersion of particles. In the subsequent EDLVO analyses, the same idea was proved.</div></div>","PeriodicalId":9966,"journal":{"name":"Chinese Journal of Chemical Engineering","volume":"83 ","pages":"Pages 1-14"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1004954125001454","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The multipath application of green resources needs to be realised under the carbon neutrality goal. Worldwide, biomass is a resource in urgent need of treatment. In this paper, corn stover biomass (YM) or biochar with different particle sizes (YMF or YMX) was added during the preparation of coal-water slurry to investigate its effect on the performance of coal-water slurry and the micro-mechanism. The results showed that the fixed viscosity concentration of coal-water slurry (CYWS) with YM was only 47.42%, and the flowability was 49.9 mm, which made the slurry performance poor. The fixed viscosity concentration of coal-water slurry (CFWS) blended with YMF and coal-water slurry (CXWS) blended with YMX increased by 10.41% and 14.24%, respectively, compared with CYWS. Meanwhile, CXWS had the lowest thixotropy and yield stress, with a yield stress of only 16.13 Pa, which was 77.31 Pa lower than that of CYWS. This indicates that YMX treated by charring and milling is more favorable to be blended with coal to prepare coal-water slurry. This is due to the enhanced hydrophilicity and electronegativity of YMX. The enhanced hydrophilicity reduces the tendency to form three-dimensional networks in coal-water slurry, while the enhanced electronegativity improves the electrostatic repulsion between particles, which is beneficial to the dispersion of particles. In the subsequent EDLVO analyses, the same idea was proved.
期刊介绍:
The Chinese Journal of Chemical Engineering (Monthly, started in 1982) is the official journal of the Chemical Industry and Engineering Society of China and published by the Chemical Industry Press Co. Ltd. The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering. It publishes original research papers that cover the major advancements and achievements in chemical engineering in China as well as some articles from overseas contributors.
The topics of journal include chemical engineering, chemical technology, biochemical engineering, energy and environmental engineering and other relevant fields. Papers are published on the basis of their relevance to theoretical research, practical application or potential uses in the industry as Research Papers, Communications, Reviews and Perspectives. Prominent domestic and overseas chemical experts and scholars have been invited to form an International Advisory Board and the Editorial Committee. It enjoys recognition among Chinese academia and industry as a reliable source of information of what is going on in chemical engineering research, both domestic and abroad.