Xiangyu Liu , Meng Liu , Jiazhe Xu , Qing Ai , Yong Shuai
{"title":"Optimization of thermal noise propagation and mechanical properties at composite material interfaces","authors":"Xiangyu Liu , Meng Liu , Jiazhe Xu , Qing Ai , Yong Shuai","doi":"10.1016/j.ijthermalsci.2025.110106","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the propagation of thermal noise in composite material interfaces and the optimization of mechanical properties, focusing on applications in gravitational wave detection systems. Gravitational wave detection requires extremely high sensitivity, imposing strict demands on the propagation of thermal noise and temperature fluctuations in materials. The study analyzed the multi-interface structure of composite materials and its crucial role in temperature control and thermal noise transport, particularly examining the impact mechanisms of interfacial thermal resistance and conductivity. Through molecular dynamics simulations, the study revealed the regulatory effect of branched structures with varying numbers of monomers on heat conduction paths, demonstrating that thermal conductivity increased from 0.00384 W/(m·K) to 0.01645 W/(m·K), a 3.28-fold improvement. Additionally, the study analyzed the effect of interfacial heat source input on temperature distribution, finding that with a 0.2 W/m<sup>2</sup> input, the temperature distribution difference was within 35 %, while with a 0.2 GW/m<sup>2</sup> input, the difference reduced to 20 %. The study also explored the effect of monomer count in branched structures on the mechanical properties of materials, such as Young's modulus and shear modulus. The results indicated that the Young's modulus of the interface in the Z-direction increased by 152.89 % when the monomer count in the branches reached 13. The findings suggest that the rational design of interface structures can significantly optimize the thermal transport and mechanical properties of composite materials.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"217 ","pages":"Article 110106"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925004296","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the propagation of thermal noise in composite material interfaces and the optimization of mechanical properties, focusing on applications in gravitational wave detection systems. Gravitational wave detection requires extremely high sensitivity, imposing strict demands on the propagation of thermal noise and temperature fluctuations in materials. The study analyzed the multi-interface structure of composite materials and its crucial role in temperature control and thermal noise transport, particularly examining the impact mechanisms of interfacial thermal resistance and conductivity. Through molecular dynamics simulations, the study revealed the regulatory effect of branched structures with varying numbers of monomers on heat conduction paths, demonstrating that thermal conductivity increased from 0.00384 W/(m·K) to 0.01645 W/(m·K), a 3.28-fold improvement. Additionally, the study analyzed the effect of interfacial heat source input on temperature distribution, finding that with a 0.2 W/m2 input, the temperature distribution difference was within 35 %, while with a 0.2 GW/m2 input, the difference reduced to 20 %. The study also explored the effect of monomer count in branched structures on the mechanical properties of materials, such as Young's modulus and shear modulus. The results indicated that the Young's modulus of the interface in the Z-direction increased by 152.89 % when the monomer count in the branches reached 13. The findings suggest that the rational design of interface structures can significantly optimize the thermal transport and mechanical properties of composite materials.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.