{"title":"Optimizing high-concentrator photovoltaic efficiency: Numerical study of hybrid nanofluid and porous wavy walled mini channel heat sink","authors":"Saeed Rabiei , Raouf Khosravi , Farid Varasteh , Amin Etminan","doi":"10.1016/j.ijthermalsci.2025.110103","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates advanced thermal management for high-concentration photovoltaic (HCPV) systems through the combined use of hybrid nanofluids and wavy-walled mini-channel heat sinks. Numerical simulations of 36 configurations, examining wave amplitudes (100–300 μm), Reynolds numbers (300–500), and nanoparticle concentrations (0–0.1 %wt) under a concentration ratio of 1200 and 1000 W/m<sup>2</sup> irradiance, demonstrate significant performance improvements. The optimal configuration achieves 41.15 % electrical efficiency and 224 W power output (i.e., 26 % higher than comparable systems) while maintaining exceptionally low pumping power (i.e., 0.007 W). Integrating wavy-walled channels with porous inserts yields substantial heat transfer enhancement by disrupting the boundary layer, promoting secondary vortices, and intensifying fluid-solid thermal interactions. This combined approach boosts thermal performance while markedly lowering the required pumping power. Artificial neural networks and genetic algorithms, successfully optimize the system by balancing electrical efficiency, temperature non-uniformity, and energy consumption. These findings provide a practical framework for implementing efficient cooling solutions in high-performance HCPV applications, offering technical advancements and sustainable energy benefits.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"217 ","pages":"Article 110103"},"PeriodicalIF":5.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925004260","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates advanced thermal management for high-concentration photovoltaic (HCPV) systems through the combined use of hybrid nanofluids and wavy-walled mini-channel heat sinks. Numerical simulations of 36 configurations, examining wave amplitudes (100–300 μm), Reynolds numbers (300–500), and nanoparticle concentrations (0–0.1 %wt) under a concentration ratio of 1200 and 1000 W/m2 irradiance, demonstrate significant performance improvements. The optimal configuration achieves 41.15 % electrical efficiency and 224 W power output (i.e., 26 % higher than comparable systems) while maintaining exceptionally low pumping power (i.e., 0.007 W). Integrating wavy-walled channels with porous inserts yields substantial heat transfer enhancement by disrupting the boundary layer, promoting secondary vortices, and intensifying fluid-solid thermal interactions. This combined approach boosts thermal performance while markedly lowering the required pumping power. Artificial neural networks and genetic algorithms, successfully optimize the system by balancing electrical efficiency, temperature non-uniformity, and energy consumption. These findings provide a practical framework for implementing efficient cooling solutions in high-performance HCPV applications, offering technical advancements and sustainable energy benefits.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.