Exciton-plasmon coupled piezo-photocatalysis in Au/BiFeO3 composites for multi-pollutant degradation

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhanpeng Zuo , Changcheng Lin , Wenrui Zhao , Yue Wang , Dongyun Li , Qiong Wu , Hongliang Ge , Pingzhan Si , Yanting Yang
{"title":"Exciton-plasmon coupled piezo-photocatalysis in Au/BiFeO3 composites for multi-pollutant degradation","authors":"Zhanpeng Zuo ,&nbsp;Changcheng Lin ,&nbsp;Wenrui Zhao ,&nbsp;Yue Wang ,&nbsp;Dongyun Li ,&nbsp;Qiong Wu ,&nbsp;Hongliang Ge ,&nbsp;Pingzhan Si ,&nbsp;Yanting Yang","doi":"10.1016/j.mseb.2025.118571","DOIUrl":null,"url":null,"abstract":"<div><div>We report the synergistic piezoelectric effect and exciton-plasmon enhanced piezo-photocatalytic performance in AuX/BiFeO<sub>3</sub> composites (AuX/BFO) (where X = 10, 20, or 30 mL of HAuCl<sub>4</sub> solution used in synthesis) in breaking down various organic pollutants. Incorporating Au nanoparticles into the BFO template notably enhanced the photocatalytic efficiency by enhancing light absorption and promoting charge carrier separation. Specifically, Au20/BFO displayed excellent piezo-photocatalytic performance, degrading 98.2 % Methylene Blue (MB) solvent at an amount of 10 mg/L within only 10 min, performing better than many reported photocatalytic materials. The piezo-photocatalytic activity of Au20/BFO for MB was 0.146 min<sup>−1</sup>, approximately 9.7 times more than that of pristine BFO. In addition, Au20/BFO demonstrated a superior piezo-photocatalytic degradation efficacy for tetracycline hydrochloride, rhodamine, and methyl orange. The study enhances our understanding of these fundamental principles and provides a novel approach for designing high-performance catalysts in multifunctional environmental applications.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"321 ","pages":"Article 118571"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725005951","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We report the synergistic piezoelectric effect and exciton-plasmon enhanced piezo-photocatalytic performance in AuX/BiFeO3 composites (AuX/BFO) (where X = 10, 20, or 30 mL of HAuCl4 solution used in synthesis) in breaking down various organic pollutants. Incorporating Au nanoparticles into the BFO template notably enhanced the photocatalytic efficiency by enhancing light absorption and promoting charge carrier separation. Specifically, Au20/BFO displayed excellent piezo-photocatalytic performance, degrading 98.2 % Methylene Blue (MB) solvent at an amount of 10 mg/L within only 10 min, performing better than many reported photocatalytic materials. The piezo-photocatalytic activity of Au20/BFO for MB was 0.146 min−1, approximately 9.7 times more than that of pristine BFO. In addition, Au20/BFO demonstrated a superior piezo-photocatalytic degradation efficacy for tetracycline hydrochloride, rhodamine, and methyl orange. The study enhances our understanding of these fundamental principles and provides a novel approach for designing high-performance catalysts in multifunctional environmental applications.

Abstract Image

Au/BiFeO3复合材料的激子-等离子体耦合压电光催化降解多污染物
我们报道了AuX/BiFeO3复合材料(AuX/BFO)(其中X = 10、20或30 mL的HAuCl4溶液用于合成)在分解各种有机污染物方面的协同压电效应和激子等离子体增强的压电光催化性能。在BFO模板中加入金纳米粒子,通过增强光吸收和促进载流子分离,显著提高了光催化效率。具体而言,Au20/BFO表现出优异的光催化性能,在10 min内降解量为10 mg/L的98.2%的亚甲基蓝(MB)溶剂,性能优于许多已报道的光催化材料。Au20/BFO对MB的压电光催化活性为0.146 min−1,约为原始BFO的9.7倍。此外,Au20/BFO对盐酸四环素、罗丹明和甲基橙表现出优异的压光催化降解效果。该研究增强了我们对这些基本原理的理解,并为设计多功能环境应用的高性能催化剂提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信