Sergio Mazzola , Gabriele Ara , Thomas Benz , Björn Forsberg , Tommaso Cucinotta , Luca Benini
{"title":"Data-driven power modeling and monitoring via hardware performance counter tracking","authors":"Sergio Mazzola , Gabriele Ara , Thomas Benz , Björn Forsberg , Tommaso Cucinotta , Luca Benini","doi":"10.1016/j.sysarc.2025.103504","DOIUrl":null,"url":null,"abstract":"<div><div>Energy-centric design is paramount in the current embedded computing era: use cases require increasingly high performance at an affordable power budget, often under real-time constraints. Hardware heterogeneity and parallelism help address the efficiency challenge, but greatly complicate online power consumption assessments, which are essential for dynamic hardware and software stack adaptations. We introduce a novel power modeling methodology with state-of-the-art accuracy, low overhead, and high responsiveness, whose implementation does not rely on microarchitectural details. Our methodology identifies the Performance Monitoring Counters (PMCs) with the highest linear correlation to the power consumption of each hardware sub-system, for each Dynamic Voltage and Frequency Scaling (DVFS) state. The individual, simple models are composed into a complete model that effectively describes the power consumption of the whole system, achieving high accuracy and low overhead. Our evaluation reports an average estimation error of 7.5% for power consumption and 1.3% for energy. We integrate these models in the Linux kernel with Runmeter, an open-source, PMC-based monitoring framework. Runmeter manages PMC sampling and processing, enabling the execution of our power models at runtime. With a worst-case time overhead of only 0.7%, Runmeter provides responsive and accurate power measurements directly in the kernel. This information can be employed for actuation policies in workload-aware DVFS and power-aware, closed-loop task scheduling.</div></div>","PeriodicalId":50027,"journal":{"name":"Journal of Systems Architecture","volume":"167 ","pages":"Article 103504"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Architecture","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383762125001766","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Energy-centric design is paramount in the current embedded computing era: use cases require increasingly high performance at an affordable power budget, often under real-time constraints. Hardware heterogeneity and parallelism help address the efficiency challenge, but greatly complicate online power consumption assessments, which are essential for dynamic hardware and software stack adaptations. We introduce a novel power modeling methodology with state-of-the-art accuracy, low overhead, and high responsiveness, whose implementation does not rely on microarchitectural details. Our methodology identifies the Performance Monitoring Counters (PMCs) with the highest linear correlation to the power consumption of each hardware sub-system, for each Dynamic Voltage and Frequency Scaling (DVFS) state. The individual, simple models are composed into a complete model that effectively describes the power consumption of the whole system, achieving high accuracy and low overhead. Our evaluation reports an average estimation error of 7.5% for power consumption and 1.3% for energy. We integrate these models in the Linux kernel with Runmeter, an open-source, PMC-based monitoring framework. Runmeter manages PMC sampling and processing, enabling the execution of our power models at runtime. With a worst-case time overhead of only 0.7%, Runmeter provides responsive and accurate power measurements directly in the kernel. This information can be employed for actuation policies in workload-aware DVFS and power-aware, closed-loop task scheduling.
期刊介绍:
The Journal of Systems Architecture: Embedded Software Design (JSA) is a journal covering all design and architectural aspects related to embedded systems and software. It ranges from the microarchitecture level via the system software level up to the application-specific architecture level. Aspects such as real-time systems, operating systems, FPGA programming, programming languages, communications (limited to analysis and the software stack), mobile systems, parallel and distributed architectures as well as additional subjects in the computer and system architecture area will fall within the scope of this journal. Technology will not be a main focus, but its use and relevance to particular designs will be. Case studies are welcome but must contribute more than just a design for a particular piece of software.
Design automation of such systems including methodologies, techniques and tools for their design as well as novel designs of software components fall within the scope of this journal. Novel applications that use embedded systems are also central in this journal. While hardware is not a part of this journal hardware/software co-design methods that consider interplay between software and hardware components with and emphasis on software are also relevant here.