{"title":"On compactness of commutators of the Christ-Journé type operators","authors":"Qianqian Zhang , Moyan Qin , Shifen Wang , Qingying Xue","doi":"10.1016/j.bulsci.2025.103692","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the commutators <span><math><mo>[</mo><mi>b</mi><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>]</mo></math></span> associated with Christ-Journé type operator<span><span><span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mtext>p.v.</mtext><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></munder><mi>K</mi><mo>(</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>)</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></msub><mi>a</mi><mi>f</mi><mo>(</mo><mi>y</mi><mo>)</mo><mi>d</mi><mi>y</mi><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></msub><mi>a</mi><mo>=</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>a</mi><mo>(</mo><mi>t</mi><mi>x</mi><mo>+</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>t</mi><mo>)</mo><mi>y</mi><mo>)</mo><mi>d</mi><mi>t</mi></math></span>. We show that <span><math><mo>[</mo><mi>b</mi><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>]</mo><mo>:</mo><mo>=</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> is bounded on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> for <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span> whenever <span><math><mi>b</mi><mo>∈</mo><mrow><mi>BMO</mi></mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, and compact on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> whenever <span><math><mi>b</mi><mo>∈</mo><mrow><mi>CMO</mi></mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, where <span><math><mrow><mi>CMO</mi></mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> is the closure of <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> in the <span><math><mrow><mi>BMO</mi></mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> topology. Furthermore, we also study Christ-Journé type commutators with rough kernels <span><math><mi>K</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>Ω</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>n</mi></mrow></msup></math></span>, denoted by <span><math><msub><mrow><mi>T</mi></mrow><mrow><mo>[</mo><mi>a</mi><mo>]</mo><mo>,</mo><mi>b</mi></mrow></msub></math></span>, and establish analogous results for their boundedness and compactness.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"204 ","pages":"Article 103692"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001186","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the commutators associated with Christ-Journé type operator where . We show that is bounded on for whenever , and compact on whenever , where is the closure of in the topology. Furthermore, we also study Christ-Journé type commutators with rough kernels , denoted by , and establish analogous results for their boundedness and compactness.