Current-overpotential relationships from electrochemical impedance spectroscopy (EIS) under DC bias – A tutorial exercise applied to a Pt||YSZ electrode
{"title":"Current-overpotential relationships from electrochemical impedance spectroscopy (EIS) under DC bias – A tutorial exercise applied to a Pt||YSZ electrode","authors":"Stine Roen , Ragnar Strandbakke , Truls Norby","doi":"10.1016/j.ssi.2025.116939","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical impedance spectroscopy (EIS) of electrode polarisation offers the possibility to delineate overpotentials into ohmic, charge transfer kinetic, and transport and other mass transfer contributions, commonly applied and interpreted under open circuit conditions. It is sometimes also applied under DC bias, as it in principle then can provide information about net anodic or cathodic processes. However, the impedances so obtained are seldomly converted to overpotentials and therefore remain as qualitative indicators only. Here, we tutorially derive formalism of converting resistances from EIS under DC bias properly into overpotential contributions to the total overpotential, allowing identification of their origins from their dependencies on the current. We illustrate the methodology by generated model current-voltage curves and then apply it to an experimental data set for a Pt electrode on an yttria-stabilised zirconia (YSZ) oxide ion conducting electrolyte. The result reveals that a dominating electrode polarisation easily taken to reflect mass transfer in fact behaves like a second charge transfer step following Butler-Volmer kinetics, allowing us to hypothesise a new model for the O<sub>2</sub>,Pt||YSZ electrode. Our tutorial exercise is applicable to both liquid- and solid-state electrochemistry and should apply equally also to EIS under DC bias of any types of junctions.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"428 ","pages":"Article 116939"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825001584","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical impedance spectroscopy (EIS) of electrode polarisation offers the possibility to delineate overpotentials into ohmic, charge transfer kinetic, and transport and other mass transfer contributions, commonly applied and interpreted under open circuit conditions. It is sometimes also applied under DC bias, as it in principle then can provide information about net anodic or cathodic processes. However, the impedances so obtained are seldomly converted to overpotentials and therefore remain as qualitative indicators only. Here, we tutorially derive formalism of converting resistances from EIS under DC bias properly into overpotential contributions to the total overpotential, allowing identification of their origins from their dependencies on the current. We illustrate the methodology by generated model current-voltage curves and then apply it to an experimental data set for a Pt electrode on an yttria-stabilised zirconia (YSZ) oxide ion conducting electrolyte. The result reveals that a dominating electrode polarisation easily taken to reflect mass transfer in fact behaves like a second charge transfer step following Butler-Volmer kinetics, allowing us to hypothesise a new model for the O2,Pt||YSZ electrode. Our tutorial exercise is applicable to both liquid- and solid-state electrochemistry and should apply equally also to EIS under DC bias of any types of junctions.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.