High open-circuit voltage in wide-bandgap bromide perovskite solar cells: the role of hole transport materials

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Mohammad Istiaque Hossain , Puvaneswaran Chelvanathan , Qingyang Liu , Brahim Aissa
{"title":"High open-circuit voltage in wide-bandgap bromide perovskite solar cells: the role of hole transport materials","authors":"Mohammad Istiaque Hossain ,&nbsp;Puvaneswaran Chelvanathan ,&nbsp;Qingyang Liu ,&nbsp;Brahim Aissa","doi":"10.1016/j.solener.2025.113741","DOIUrl":null,"url":null,"abstract":"<div><div>We report the fabrication and characterization of mesoporous TiO<sub>2</sub>-based wide-bandgap bromide perovskite (FAPbBr<sub>3</sub>) solar cells employing both fluorene-dithiophene and spiro-OMeTAD as hole transport materials (HTMs). The devices were fabricated using the same protocol as those investigated for spectroscopy, ensuring consistent material deposition and interface quality. Current-voltage (I-V) measurements under one sun illumination revealed promising photovoltaic performance, with power conversion efficiencies (PCE) of 6.7 % (Voc = 1.40 V, Jsc = 6.80 mA/cm<sup>2</sup>, FF = 70 %) for spiro-OMeTAD and 6.3 % (Voc = 1.39 V, Jsc = 6.60 mA/cm<sup>2</sup>, FF = 68 %) for fluorene-dithiophene-based devices. The exceptionally high open-circuit voltage (∼1.40 V) achieved by both HTMs highlights excellent interface quality and reduced non-radiative recombination losses. Both, X-ray Photoelectron Spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS) were employed to investigate the chemical composition, elemental distribution, and depth profiling of the fabricated FAPbBr<sub>3</sub>-based solar cells with different hole transport materials (HTMs). XPS analysis confirmed the presence of characteristic Pb 4f, Br 3d, and N 1s peaks, verifying the composition of the perovskite layer. The SIMS results revealed a uniform distribution of bromide (Br<sup>−</sup>) within the perovskite layer, confirming the stability of the material and the absence of significant halide migration. Depth profiling further demonstrated well-defined interfaces between the perovskite, mesoporous TiO<sub>2</sub>, and the respective HTMs, with minimal interdiffusion, which aligns with the high open-circuit voltage (∼1.40 V) observed in the I-V measurements. We have also studied the charge extraction behavior and recombination dynamics using steady-state and transient optoelectronic characterization tools. FDT-based devices confirm better charge injections and better Voc compared to Spiro-OMeTAD devices. These results underscore the potential of bromide-based perovskites for high-voltage photovoltaic applications and emphasize the critical role of HTM selection in optimizing device performance.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"299 ","pages":"Article 113741"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25005043","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

We report the fabrication and characterization of mesoporous TiO2-based wide-bandgap bromide perovskite (FAPbBr3) solar cells employing both fluorene-dithiophene and spiro-OMeTAD as hole transport materials (HTMs). The devices were fabricated using the same protocol as those investigated for spectroscopy, ensuring consistent material deposition and interface quality. Current-voltage (I-V) measurements under one sun illumination revealed promising photovoltaic performance, with power conversion efficiencies (PCE) of 6.7 % (Voc = 1.40 V, Jsc = 6.80 mA/cm2, FF = 70 %) for spiro-OMeTAD and 6.3 % (Voc = 1.39 V, Jsc = 6.60 mA/cm2, FF = 68 %) for fluorene-dithiophene-based devices. The exceptionally high open-circuit voltage (∼1.40 V) achieved by both HTMs highlights excellent interface quality and reduced non-radiative recombination losses. Both, X-ray Photoelectron Spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS) were employed to investigate the chemical composition, elemental distribution, and depth profiling of the fabricated FAPbBr3-based solar cells with different hole transport materials (HTMs). XPS analysis confirmed the presence of characteristic Pb 4f, Br 3d, and N 1s peaks, verifying the composition of the perovskite layer. The SIMS results revealed a uniform distribution of bromide (Br) within the perovskite layer, confirming the stability of the material and the absence of significant halide migration. Depth profiling further demonstrated well-defined interfaces between the perovskite, mesoporous TiO2, and the respective HTMs, with minimal interdiffusion, which aligns with the high open-circuit voltage (∼1.40 V) observed in the I-V measurements. We have also studied the charge extraction behavior and recombination dynamics using steady-state and transient optoelectronic characterization tools. FDT-based devices confirm better charge injections and better Voc compared to Spiro-OMeTAD devices. These results underscore the potential of bromide-based perovskites for high-voltage photovoltaic applications and emphasize the critical role of HTM selection in optimizing device performance.
宽禁带溴化钙钛矿太阳能电池中的高开路电压:空穴传输材料的作用
我们报道了采用芴-二噻吩和螺环- ometad作为空穴传输材料(HTMs)制备并表征了介孔tio2基宽禁带溴化钙钛矿(FAPbBr3)太阳能电池。这些器件采用与光谱学研究相同的工艺制造,确保了一致的材料沉积和界面质量。在一次阳光照射下的电流-电压(I-V)测量显示了良好的光伏性能,spiro-OMeTAD的功率转换效率(PCE)为6.7% (Voc = 1.40 V, Jsc = 6.80 mA/cm2, FF = 70%),芴-二噻吩基器件的功率转换效率(PCE)为6.3% (Voc = 1.39 V, Jsc = 6.60 mA/cm2, FF = 68%)。这两种HTMs实现了极高的开路电压(约1.40 V),突出了出色的接口质量,并降低了非辐射复合损耗。利用x射线光电子能谱(XPS)和次级离子质谱(SIMS)研究了不同空穴传输材料(HTMs)制备的fapbbr3基太阳能电池的化学组成、元素分布和深度分布。XPS分析证实了特征Pb 4f、Br 3d和n1s峰的存在,验证了钙钛矿层的组成。SIMS结果显示,钙钛矿层内溴化物(Br−)分布均匀,证实了材料的稳定性和没有明显的卤化物迁移。深度分析进一步证明了钙钛矿、介孔TiO2和各自的HTMs之间定义良好的界面,具有最小的相互扩散,这与在I-V测量中观察到的高开路电压(~ 1.40 V)一致。我们还利用稳态和瞬态光电表征工具研究了电荷提取行为和复合动力学。与Spiro-OMeTAD器件相比,基于fdt的器件证实了更好的电荷注入和更低的Voc。这些结果强调了溴基钙钛矿在高压光伏应用中的潜力,并强调了HTM选择在优化器件性能方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信