Bayesian estimation in multiple comparisons

IF 4.2 1区 文学 Q1 LINGUISTICS
Guilherme D. Garcia
{"title":"Bayesian estimation in multiple comparisons","authors":"Guilherme D. Garcia","doi":"10.1017/s0272263125100922","DOIUrl":null,"url":null,"abstract":"Traditional regression models typically estimate parameters for a factor <jats:italic>F</jats:italic> by designating one level as a reference (intercept) and calculating slopes for other levels of <jats:italic>F.</jats:italic> While this approach often aligns with our research question(s), it limits direct comparisons between all pairs of levels within <jats:italic>F</jats:italic> and requires additional procedures for generating these comparisons. Moreover, Frequentist methods often rely on corrections (e.g., Bonferroni or Tukey), which can reduce statistical power and inflate uncertainty by mechanically widening confidence intervals. This paper demonstrates how Bayesian hierarchical models provide a robust framework for parameter estimation in the context of multiple comparisons. By leveraging entire posterior distributions, these models produce estimates for all pairwise comparisons without requiring post hoc adjustments. The hierarchical structure, combined with the use of priors, naturally incorporates shrinkage, pulling extreme estimates toward the overall mean. This regularization improves the stability and reliability of estimates, particularly in the presence of sparse or noisy data, and leads to more conservative comparisons. Bayesian models also offer a flexible framework for addressing heteroscedasticity by directly modeling variance structures and incorporating them into the posterior distribution. The result is a coherent approach to exploring differences between levels of <jats:italic>F</jats:italic>, where parameter estimates reflect the full uncertainty of the data.","PeriodicalId":22008,"journal":{"name":"Studies in Second Language Acquisition","volume":"22 1","pages":"1-27"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Second Language Acquisition","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1017/s0272263125100922","RegionNum":1,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LINGUISTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional regression models typically estimate parameters for a factor F by designating one level as a reference (intercept) and calculating slopes for other levels of F. While this approach often aligns with our research question(s), it limits direct comparisons between all pairs of levels within F and requires additional procedures for generating these comparisons. Moreover, Frequentist methods often rely on corrections (e.g., Bonferroni or Tukey), which can reduce statistical power and inflate uncertainty by mechanically widening confidence intervals. This paper demonstrates how Bayesian hierarchical models provide a robust framework for parameter estimation in the context of multiple comparisons. By leveraging entire posterior distributions, these models produce estimates for all pairwise comparisons without requiring post hoc adjustments. The hierarchical structure, combined with the use of priors, naturally incorporates shrinkage, pulling extreme estimates toward the overall mean. This regularization improves the stability and reliability of estimates, particularly in the presence of sparse or noisy data, and leads to more conservative comparisons. Bayesian models also offer a flexible framework for addressing heteroscedasticity by directly modeling variance structures and incorporating them into the posterior distribution. The result is a coherent approach to exploring differences between levels of F, where parameter estimates reflect the full uncertainty of the data.
多重比较中的贝叶斯估计
传统的回归模型通常通过指定一个水平作为参考(截距)并计算F的其他水平的斜率来估计因子F的参数。虽然这种方法通常与我们的研究问题一致,但它限制了F内所有水平对之间的直接比较,并且需要额外的程序来生成这些比较。此外,频率论方法通常依赖于修正(例如,Bonferroni或Tukey),这可以通过机械地扩大置信区间来降低统计能力并增加不确定性。本文演示了贝叶斯层次模型如何在多重比较的背景下为参数估计提供一个健壮的框架。通过利用整个后验分布,这些模型产生了所有两两比较的估计,而不需要事后调整。层次结构与先验的使用相结合,自然地结合了收缩,将极端估计拉向总体平均值。这种正则化提高了估计的稳定性和可靠性,特别是在存在稀疏或噪声数据的情况下,并导致更保守的比较。贝叶斯模型还通过直接建模方差结构并将其纳入后验分布,为解决异方差问题提供了一个灵活的框架。结果是一种连贯的方法来探索F水平之间的差异,其中参数估计反映了数据的全部不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
9.80%
发文量
52
期刊介绍: Studies in Second Language Acquisition is a refereed journal of international scope devoted to the scientific discussion of acquisition or use of non-native and heritage languages. Each volume (five issues) contains research articles of either a quantitative, qualitative, or mixed-methods nature in addition to essays on current theoretical matters. Other rubrics include shorter articles such as Replication Studies, Critical Commentaries, and Research Reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信