Synthesis, characterization and cytotoxic evaluation of metal complexes derived from new N'-(2-cyanoacetyl)isonicotinohydrazide.

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Mohamed H Abdel-Rhman, Ghada Samir, Nasser M Hosny
{"title":"Synthesis, characterization and cytotoxic evaluation of metal complexes derived from new N'-(2-cyanoacetyl)isonicotinohydrazide.","authors":"Mohamed H Abdel-Rhman, Ghada Samir, Nasser M Hosny","doi":"10.1038/s41598-025-07689-w","DOIUrl":null,"url":null,"abstract":"<p><p>The novel ligand (H<sub>2</sub>L), N'-(2-cyanoacetyl)isonicotinohydrazide, has been synthesized via reacting the isonicotinic hydrazide with 1-cyanoacetyl-3,5-dimethylpyrazole. The keto-form of the free ligand has been evoked from its spectral data. Based on elemental analyses and mass spectra, the ligand formed 1:1 (M: L) metal complexes with the acetate salts of Cu(II), Co(II), Ni(II) and Zn(II). The complexes' spectral analyses revealed that the ligand behaved as a mononegative bidentate via the hydrazonyl N<sup>1</sup> and deprotonated enolized acetyl oxygen. Moreover, the DFT quantum chemical calculations revealed that the ligand had higher HOMO and lower LUMO energies than metal complexes, implying an electron donating character. Furthermore, the in vitro anticancer activity against HepG2 and HCT-116 cell lines displayed that the ligand was more potent than doxorubicin against both cell lines, although the metal complexes displayed lower efficacy.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"20335"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12205053/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-07689-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The novel ligand (H2L), N'-(2-cyanoacetyl)isonicotinohydrazide, has been synthesized via reacting the isonicotinic hydrazide with 1-cyanoacetyl-3,5-dimethylpyrazole. The keto-form of the free ligand has been evoked from its spectral data. Based on elemental analyses and mass spectra, the ligand formed 1:1 (M: L) metal complexes with the acetate salts of Cu(II), Co(II), Ni(II) and Zn(II). The complexes' spectral analyses revealed that the ligand behaved as a mononegative bidentate via the hydrazonyl N1 and deprotonated enolized acetyl oxygen. Moreover, the DFT quantum chemical calculations revealed that the ligand had higher HOMO and lower LUMO energies than metal complexes, implying an electron donating character. Furthermore, the in vitro anticancer activity against HepG2 and HCT-116 cell lines displayed that the ligand was more potent than doxorubicin against both cell lines, although the metal complexes displayed lower efficacy.

新型N′-(2-氰乙酰基)异烟碱肼金属配合物的合成、表征及细胞毒性评价。
通过异烟碱肼与1-氰乙酰-3,5-二甲基吡唑反应,合成了新型配体N′-(2-氰乙酰基)异烟碱肼(H2L)。从光谱数据中得到了游离配体的酮型。根据元素分析和质谱分析,该配体与Cu(II)、Co(II)、Ni(II)和Zn(II)等乙酸盐形成1:1 (M: L)的金属配合物。配合物的光谱分析表明,该配体通过肼酰基N1和烯化乙酰氧表现为单负双齿化合物。此外,DFT量子化学计算表明,配体比金属配合物具有更高的HOMO和更低的LUMO能量,这意味着配体具有给电子特性。此外,对HepG2和HCT-116细胞系的体外抗癌活性表明,尽管金属配合物的效果较低,但该配体对这两种细胞系的抗癌活性都比阿霉素强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信