Yan Bi, Jindian Hu, Tao Wu, Zhaohui Ouyang, Tan Lin, Jiaxing Sun, Xinbao Zhang, Xiaoyu Xu, Hong Wang, Ke Wei, Shaorong Gao, Yixuan Wang
{"title":"Optimized derivation and culture system of human naïve pluripotent stem cells with enhanced DNA methylation status and genomic stability.","authors":"Yan Bi, Jindian Hu, Tao Wu, Zhaohui Ouyang, Tan Lin, Jiaxing Sun, Xinbao Zhang, Xiaoyu Xu, Hong Wang, Ke Wei, Shaorong Gao, Yixuan Wang","doi":"10.1093/procel/pwaf053","DOIUrl":null,"url":null,"abstract":"<p><p>Human naïve pluripotent stem cells (PSCs) hold great promise for embryonic development studies. Existing induction and culture strategies for these cells, heavily dependent on MEK inhibitors, lead to widespread DNA hypomethylation, aberrant imprinting loss, and genomic instability during extended culture. Here, employing high-content analysis alongside a bifluorescence reporter system indicative of human naïve pluripotency, we screened over 1,600 chemicals and identified 7 promising candidates. From these, we developed four optimized media-LAY, LADY, LUDY, and LKPY-that effectively induce and sustain PSCs in the naïve state. Notably, cells reset or cultured in these media, especially in the LAY system, demonstrate improved genome-wide DNA methylation status closely resembling that of pre-implantation counterparts, with partially restored imprinting and significantly enhanced genomic stability. Overall, our study contributes advancements to naïve pluripotency induction and long-term maintenance, providing insights for further applications of naïve PSCs.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":13.6000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein & Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/procel/pwaf053","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Human naïve pluripotent stem cells (PSCs) hold great promise for embryonic development studies. Existing induction and culture strategies for these cells, heavily dependent on MEK inhibitors, lead to widespread DNA hypomethylation, aberrant imprinting loss, and genomic instability during extended culture. Here, employing high-content analysis alongside a bifluorescence reporter system indicative of human naïve pluripotency, we screened over 1,600 chemicals and identified 7 promising candidates. From these, we developed four optimized media-LAY, LADY, LUDY, and LKPY-that effectively induce and sustain PSCs in the naïve state. Notably, cells reset or cultured in these media, especially in the LAY system, demonstrate improved genome-wide DNA methylation status closely resembling that of pre-implantation counterparts, with partially restored imprinting and significantly enhanced genomic stability. Overall, our study contributes advancements to naïve pluripotency induction and long-term maintenance, providing insights for further applications of naïve PSCs.
期刊介绍:
Protein & Cell is a monthly, peer-reviewed, open-access journal focusing on multidisciplinary aspects of biology and biomedicine, with a primary emphasis on protein and cell research. It publishes original research articles, reviews, and commentaries across various fields including biochemistry, biophysics, cell biology, genetics, immunology, microbiology, molecular biology, neuroscience, oncology, protein science, structural biology, and translational medicine. The journal also features content on research policies, funding trends in China, and serves as a platform for academic exchange among life science researchers.