Optimized derivation and culture system of human naïve pluripotent stem cells with enhanced DNA methylation status and genomic stability.

IF 13.6 1区 生物学 Q1 CELL BIOLOGY
Yan Bi, Jindian Hu, Tao Wu, Zhaohui Ouyang, Tan Lin, Jiaxing Sun, Xinbao Zhang, Xiaoyu Xu, Hong Wang, Ke Wei, Shaorong Gao, Yixuan Wang
{"title":"Optimized derivation and culture system of human naïve pluripotent stem cells with enhanced DNA methylation status and genomic stability.","authors":"Yan Bi, Jindian Hu, Tao Wu, Zhaohui Ouyang, Tan Lin, Jiaxing Sun, Xinbao Zhang, Xiaoyu Xu, Hong Wang, Ke Wei, Shaorong Gao, Yixuan Wang","doi":"10.1093/procel/pwaf053","DOIUrl":null,"url":null,"abstract":"<p><p>Human naïve pluripotent stem cells (PSCs) hold great promise for embryonic development studies. Existing induction and culture strategies for these cells, heavily dependent on MEK inhibitors, lead to widespread DNA hypomethylation, aberrant imprinting loss, and genomic instability during extended culture. Here, employing high-content analysis alongside a bifluorescence reporter system indicative of human naïve pluripotency, we screened over 1,600 chemicals and identified 7 promising candidates. From these, we developed four optimized media-LAY, LADY, LUDY, and LKPY-that effectively induce and sustain PSCs in the naïve state. Notably, cells reset or cultured in these media, especially in the LAY system, demonstrate improved genome-wide DNA methylation status closely resembling that of pre-implantation counterparts, with partially restored imprinting and significantly enhanced genomic stability. Overall, our study contributes advancements to naïve pluripotency induction and long-term maintenance, providing insights for further applications of naïve PSCs.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":""},"PeriodicalIF":13.6000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein & Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/procel/pwaf053","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Human naïve pluripotent stem cells (PSCs) hold great promise for embryonic development studies. Existing induction and culture strategies for these cells, heavily dependent on MEK inhibitors, lead to widespread DNA hypomethylation, aberrant imprinting loss, and genomic instability during extended culture. Here, employing high-content analysis alongside a bifluorescence reporter system indicative of human naïve pluripotency, we screened over 1,600 chemicals and identified 7 promising candidates. From these, we developed four optimized media-LAY, LADY, LUDY, and LKPY-that effectively induce and sustain PSCs in the naïve state. Notably, cells reset or cultured in these media, especially in the LAY system, demonstrate improved genome-wide DNA methylation status closely resembling that of pre-implantation counterparts, with partially restored imprinting and significantly enhanced genomic stability. Overall, our study contributes advancements to naïve pluripotency induction and long-term maintenance, providing insights for further applications of naïve PSCs.

优化人类naïve多能干细胞的衍生和培养系统,提高DNA甲基化状态和基因组稳定性。
人类naïve多能干细胞(PSCs)在胚胎发育研究中具有很大的前景。这些细胞的现有诱导和培养策略严重依赖于MEK抑制剂,导致广泛的DNA低甲基化,异常印迹丢失,以及在长期培养过程中基因组不稳定。在这里,我们采用高含量分析和指示人类naïve多能性的双荧光报告系统,筛选了1,600多种化学物质,并确定了7种有希望的候选物质。在此基础上,我们开发了四种优化的培养基,lay、LADY、LUDY和lkpy,它们可以有效地诱导和维持psc在naïve状态。值得注意的是,在这些培养基中重置或培养的细胞,特别是在LAY系统中,表现出与植入前相似的全基因组DNA甲基化状态的改善,部分恢复了印迹,显著增强了基因组稳定性。总的来说,我们的研究有助于naïve多能性诱导和长期维持,为naïve psc的进一步应用提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Protein & Cell
Protein & Cell CELL BIOLOGY-
CiteScore
24.00
自引率
0.90%
发文量
1029
审稿时长
6-12 weeks
期刊介绍: Protein & Cell is a monthly, peer-reviewed, open-access journal focusing on multidisciplinary aspects of biology and biomedicine, with a primary emphasis on protein and cell research. It publishes original research articles, reviews, and commentaries across various fields including biochemistry, biophysics, cell biology, genetics, immunology, microbiology, molecular biology, neuroscience, oncology, protein science, structural biology, and translational medicine. The journal also features content on research policies, funding trends in China, and serves as a platform for academic exchange among life science researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信