Qin-Rong Tan, Lin-Lin Yao, Min Yuan, Shaopeng Sun, Xiang-Dong Li
{"title":"Endocytosis in Fusarium graminearum requires coordination of the motor domain and two tail homology domains of myosin-1.","authors":"Qin-Rong Tan, Lin-Lin Yao, Min Yuan, Shaopeng Sun, Xiang-Dong Li","doi":"10.1016/j.micpath.2025.107841","DOIUrl":null,"url":null,"abstract":"<p><p>Fusarium graminearum is a major pathogen for the outbreak of Fusarium head blight disease. Recently, it was found that phenamacril (a Fusarium-specific fungicide) specifically inhibits the motor function of F. graminearum myosin-1 (FgMyo1). By using the FgMyo1-specific inhibitor phenamacril and genetic manipulation of FgMyo1 gene, we investigated the roles of each FgMyo1 domains (motor domain, TH1 domain, TH2 domain, SH3 domain, and CA domains) in supporting F. graminearum growth, with a special focus on endocytosis and subapical localization of FgMyo1. We demonstrate that FgMyo1<sup>TH2</sup> (a truncated FgMyo1 containing the motor domain, IQ motifs, TH1 and TH2 domains) is sufficient to support endocytosis of F. graminearum and subapical localization of FgMyo1. Biochemical analysis and electron microscopy revealed that FgMyo1<sup>TH2</sup> contains two actin-binding sites (the motor domain and the TH2 domain) and is able to crosslink actin filaments to form bundles. Based on above results, we propose a positive-feedback model explaining FgMyo1-dependent actin polymerization at endocytic site in subapical hyphae of F. graminearum: FgMyo1 molecules anchor at bottom of endocytic pitch, driving inward movement of actin filaments and enhancing actin polymerization; with more actin filaments are formed, more FgMyo1 molecules are recruited to the endocytic site.</p>","PeriodicalId":18599,"journal":{"name":"Microbial pathogenesis","volume":" ","pages":"107841"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial pathogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.micpath.2025.107841","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fusarium graminearum is a major pathogen for the outbreak of Fusarium head blight disease. Recently, it was found that phenamacril (a Fusarium-specific fungicide) specifically inhibits the motor function of F. graminearum myosin-1 (FgMyo1). By using the FgMyo1-specific inhibitor phenamacril and genetic manipulation of FgMyo1 gene, we investigated the roles of each FgMyo1 domains (motor domain, TH1 domain, TH2 domain, SH3 domain, and CA domains) in supporting F. graminearum growth, with a special focus on endocytosis and subapical localization of FgMyo1. We demonstrate that FgMyo1TH2 (a truncated FgMyo1 containing the motor domain, IQ motifs, TH1 and TH2 domains) is sufficient to support endocytosis of F. graminearum and subapical localization of FgMyo1. Biochemical analysis and electron microscopy revealed that FgMyo1TH2 contains two actin-binding sites (the motor domain and the TH2 domain) and is able to crosslink actin filaments to form bundles. Based on above results, we propose a positive-feedback model explaining FgMyo1-dependent actin polymerization at endocytic site in subapical hyphae of F. graminearum: FgMyo1 molecules anchor at bottom of endocytic pitch, driving inward movement of actin filaments and enhancing actin polymerization; with more actin filaments are formed, more FgMyo1 molecules are recruited to the endocytic site.
期刊介绍:
Microbial Pathogenesis publishes original contributions and reviews about the molecular and cellular mechanisms of infectious diseases. It covers microbiology, host-pathogen interaction and immunology related to infectious agents, including bacteria, fungi, viruses and protozoa. It also accepts papers in the field of clinical microbiology, with the exception of case reports.
Research Areas Include:
-Pathogenesis
-Virulence factors
-Host susceptibility or resistance
-Immune mechanisms
-Identification, cloning and sequencing of relevant genes
-Genetic studies
-Viruses, prokaryotic organisms and protozoa
-Microbiota
-Systems biology related to infectious diseases
-Targets for vaccine design (pre-clinical studies)