Novel Supplementation of Fe3O4-Doped Green Carbonized Nanoparticles on Hydrogenases Genes and Microbial Biodiversity for Enhancing Biohydrogen Yield in Dark Fermentation Microbial Electrohydrogenesis Cells.
IF 3.2 4区 生物学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Hikmatullah Ahmadi, Anam Jalil, Sohail Khan, Irfan Ali Phulpoto, Zhang Chengyu, Zhisheng Yu
{"title":"Novel Supplementation of Fe3O4-Doped Green Carbonized Nanoparticles on Hydrogenases Genes and Microbial Biodiversity for Enhancing Biohydrogen Yield in Dark Fermentation Microbial Electrohydrogenesis Cells.","authors":"Hikmatullah Ahmadi, Anam Jalil, Sohail Khan, Irfan Ali Phulpoto, Zhang Chengyu, Zhisheng Yu","doi":"10.1093/jimb/kuaf016","DOIUrl":null,"url":null,"abstract":"<p><p>Achieving high-purity biohydrogen (Bio-H₂) production necessitates the suppression of hydrogenotrophic methanogens, as their activity can impede hydrogen yield. Various inoculum pretreatments have been employed to suppress methane-producing Microorganisms; however, these methods can negatively impact the enzymatic activity of hydrogen-producing microorganisms, thereby reducing hydrogen production. To address this challenge, this research investigates a novel approach to enhance Bio-H₂ production by activating microbial enzymes using magnetite Fe₃O₄-doped carbonized nanoparticles (NPs) derived from vegetable leaves (VLCFe₃O₄-NPs) within a coupled dark fermentation-microbial Electrohydrogenesis system. Characterization results revealed that VLCFe₃O₄-NPs exhibited cubic and spherical morphologies, with a small diameter of 1±100 nm and a mean crystallite size of 38.1 nm, indicating high purity. Fermentation tests investigated the impact of different nanoparticle dosages on Bio-H₂ generation, hydrogenase gene expression (Fe-Fe and Ni-Fe), and microbial biodiversity. Bio-H₂ production significantly improved with 500 mg/L VLCFe₃O₄-NPs, yielding 1.2-fold more than the control group, while even a low dose of 25 mg/L resulted in a 0.22-fold increase. Relative gene expression analysis using qPCR and the 2-ΔΔCT method demonstrated a 30-fold increase in Cbei 1773 (Fe-Fe hydrogenase) and a 23-fold increase in hucL (Ni-Fe hydrogenase) gene expression, along with an increase in 16S rDNA. Additionally, the abundance of biohydrogen-producing bacteria, Clostridium_sensu_stricto_1 and Clostridium_sensu_stricto_11, increased by 14.3% and 11.1%, respectively, compared to 4.9% and 3.9% in the control group. This research indicates that VLCFe₃O₄-NPs offer an eco-friendly solution for boosting biohydrogen production within DF-MECs systems, thereby supporting sustainable bioenergy generation.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuaf016","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving high-purity biohydrogen (Bio-H₂) production necessitates the suppression of hydrogenotrophic methanogens, as their activity can impede hydrogen yield. Various inoculum pretreatments have been employed to suppress methane-producing Microorganisms; however, these methods can negatively impact the enzymatic activity of hydrogen-producing microorganisms, thereby reducing hydrogen production. To address this challenge, this research investigates a novel approach to enhance Bio-H₂ production by activating microbial enzymes using magnetite Fe₃O₄-doped carbonized nanoparticles (NPs) derived from vegetable leaves (VLCFe₃O₄-NPs) within a coupled dark fermentation-microbial Electrohydrogenesis system. Characterization results revealed that VLCFe₃O₄-NPs exhibited cubic and spherical morphologies, with a small diameter of 1±100 nm and a mean crystallite size of 38.1 nm, indicating high purity. Fermentation tests investigated the impact of different nanoparticle dosages on Bio-H₂ generation, hydrogenase gene expression (Fe-Fe and Ni-Fe), and microbial biodiversity. Bio-H₂ production significantly improved with 500 mg/L VLCFe₃O₄-NPs, yielding 1.2-fold more than the control group, while even a low dose of 25 mg/L resulted in a 0.22-fold increase. Relative gene expression analysis using qPCR and the 2-ΔΔCT method demonstrated a 30-fold increase in Cbei 1773 (Fe-Fe hydrogenase) and a 23-fold increase in hucL (Ni-Fe hydrogenase) gene expression, along with an increase in 16S rDNA. Additionally, the abundance of biohydrogen-producing bacteria, Clostridium_sensu_stricto_1 and Clostridium_sensu_stricto_11, increased by 14.3% and 11.1%, respectively, compared to 4.9% and 3.9% in the control group. This research indicates that VLCFe₃O₄-NPs offer an eco-friendly solution for boosting biohydrogen production within DF-MECs systems, thereby supporting sustainable bioenergy generation.
期刊介绍:
The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology