Giada Dal Collo, Srdjan Grusanovic, Milad Rasouli, Antoinette van Hoven-Beijen, Yvonne M Mueller, Zara-Li van der Sande, Martin van Hagen, Jan J Cornelissen, Yun He, Yuandong Wang, Emma De Pater, Vincent H J van der Velden, Marc H G P Raaijmakers, Meritxell Alberich-Jorda, Jiuqiao Zhao, Peter D Katsikis, Stefan J Erkeland
{"title":"Immunotherapy for rapid bone marrow conditioning and leukemia depletion that allows efficient hematopoietic stem cell transplantation.","authors":"Giada Dal Collo, Srdjan Grusanovic, Milad Rasouli, Antoinette van Hoven-Beijen, Yvonne M Mueller, Zara-Li van der Sande, Martin van Hagen, Jan J Cornelissen, Yun He, Yuandong Wang, Emma De Pater, Vincent H J van der Velden, Marc H G P Raaijmakers, Meritxell Alberich-Jorda, Jiuqiao Zhao, Peter D Katsikis, Stefan J Erkeland","doi":"10.1136/jitc-2025-011888","DOIUrl":null,"url":null,"abstract":"<p><p>Hematopoietic stem cell transplantation (HSCT) is a life-saving procedure to treat hematopoietic disorders. Current bone marrow conditioning protocols create space for healthy donor stem cells by employing irradiation and/or chemotherapy, but carry severe toxicities, resulting in significant morbidity, mortality and substantial long-term complications. To develop a low-toxicity solution, we generated a bi-specific T-cell engager (BTCE) that targets CD117, an abundantly expressed receptor on hematopoietic stem and progenitor cells (HSPC) and leukemia-initiating cells (LICs). We show that the CD117×CD3 BTCE efficiently depletes in vitro and in vivo HSPCs and LICs. The CD117×CD3 BTCE was not toxic and facilitates highly efficient engraftment of human allogenic donor CD34+cells in humanized mice, thereby restoring hematopoiesis in vivo in both normal and leukemia-bearing humanized mice. We demonstrate here that a potent CD117×CD3 BTCE enables rapid HSCT in both benign and malignant conditions.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"13 6","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12207149/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Immunotherapy of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jitc-2025-011888","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hematopoietic stem cell transplantation (HSCT) is a life-saving procedure to treat hematopoietic disorders. Current bone marrow conditioning protocols create space for healthy donor stem cells by employing irradiation and/or chemotherapy, but carry severe toxicities, resulting in significant morbidity, mortality and substantial long-term complications. To develop a low-toxicity solution, we generated a bi-specific T-cell engager (BTCE) that targets CD117, an abundantly expressed receptor on hematopoietic stem and progenitor cells (HSPC) and leukemia-initiating cells (LICs). We show that the CD117×CD3 BTCE efficiently depletes in vitro and in vivo HSPCs and LICs. The CD117×CD3 BTCE was not toxic and facilitates highly efficient engraftment of human allogenic donor CD34+cells in humanized mice, thereby restoring hematopoiesis in vivo in both normal and leukemia-bearing humanized mice. We demonstrate here that a potent CD117×CD3 BTCE enables rapid HSCT in both benign and malignant conditions.
期刊介绍:
The Journal for ImmunoTherapy of Cancer (JITC) is a peer-reviewed publication that promotes scientific exchange and deepens knowledge in the constantly evolving fields of tumor immunology and cancer immunotherapy. With an open access format, JITC encourages widespread access to its findings. The journal covers a wide range of topics, spanning from basic science to translational and clinical research. Key areas of interest include tumor-host interactions, the intricate tumor microenvironment, animal models, the identification of predictive and prognostic immune biomarkers, groundbreaking pharmaceutical and cellular therapies, innovative vaccines, combination immune-based treatments, and the study of immune-related toxicity.