Spatial constraints and cell surface molecule depletion structure a randomly connected learning circuit.

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Current Biology Pub Date : 2025-07-07 Epub Date: 2025-06-26 DOI:10.1016/j.cub.2025.05.062
Emma M Thornton-Kolbe, Maria Ahmed, Finley R Gordon, Bogdan Sieriebriennikov, Donnell L Williams, Yerbol Z Kurmangaliyev, E Josephine Clowney
{"title":"Spatial constraints and cell surface molecule depletion structure a randomly connected learning circuit.","authors":"Emma M Thornton-Kolbe, Maria Ahmed, Finley R Gordon, Bogdan Sieriebriennikov, Donnell L Williams, Yerbol Z Kurmangaliyev, E Josephine Clowney","doi":"10.1016/j.cub.2025.05.062","DOIUrl":null,"url":null,"abstract":"<p><p>The brain can represent almost limitless objects to \"categorize an unlabeled world\" (Edelman, 1989). This feat is supported by expansion-layer circuit architectures, in which neurons carrying information about discrete sensory channels make combinatorial connections to much larger postsynaptic populations. Combinatorial connections in expansion layers are modeled as randomized sets. The extent to which randomized wiring exists in vivo is debated, and how combinatorial connectivity patterns are generated during development is not understood. Non-deterministic wiring algorithms could program such connectivity using minimal genomic information. Here, we investigate anatomic and transcriptional patterns and perturb partner availability to ask how Kenyon cells, the expansion layer neurons of the insect mushroom body, obtain combinatorial input from olfactory projection neurons. Olfactory projection neurons form their presynaptic outputs in an orderly, predictable, and biased fashion. We find that Kenyon cells accept spatially co-located but molecularly heterogeneous inputs from this orderly map and ask how their cell surface molecule expression impacts partner choice. Cell surface immunoglobulins are broadly depleted in Kenyon cells, and we propose that this allows them to form connections with molecularly heterogeneous partners. This model can explain how developmentally identical neurons acquire diverse wiring identities.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"3191-3208.e10"},"PeriodicalIF":8.1000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2025.05.062","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The brain can represent almost limitless objects to "categorize an unlabeled world" (Edelman, 1989). This feat is supported by expansion-layer circuit architectures, in which neurons carrying information about discrete sensory channels make combinatorial connections to much larger postsynaptic populations. Combinatorial connections in expansion layers are modeled as randomized sets. The extent to which randomized wiring exists in vivo is debated, and how combinatorial connectivity patterns are generated during development is not understood. Non-deterministic wiring algorithms could program such connectivity using minimal genomic information. Here, we investigate anatomic and transcriptional patterns and perturb partner availability to ask how Kenyon cells, the expansion layer neurons of the insect mushroom body, obtain combinatorial input from olfactory projection neurons. Olfactory projection neurons form their presynaptic outputs in an orderly, predictable, and biased fashion. We find that Kenyon cells accept spatially co-located but molecularly heterogeneous inputs from this orderly map and ask how their cell surface molecule expression impacts partner choice. Cell surface immunoglobulins are broadly depleted in Kenyon cells, and we propose that this allows them to form connections with molecularly heterogeneous partners. This model can explain how developmentally identical neurons acquire diverse wiring identities.

空间约束和细胞表面分子耗竭构成了一个随机连接的学习电路。
大脑可以代表几乎无限的对象来“对未标记的世界进行分类”(Edelman, 1989)。这一壮举得到了扩展层电路结构的支持,在扩展层电路结构中,携带离散感觉通道信息的神经元与更大的突触后群体形成组合连接。扩展层中的组合连接被建模为随机集。随机布线在体内存在的程度是有争议的,在发育过程中组合连接模式是如何产生的也不清楚。非确定性布线算法可以使用最少的基因组信息来编程这种连接。在这里,我们研究了解剖和转录模式以及干扰伴侣的可用性,以了解昆虫蘑菇体的扩展层神经元Kenyon细胞如何从嗅觉投射神经元获得组合输入。嗅觉投射神经元以有序、可预测和有偏差的方式形成突触前输出。我们发现Kenyon细胞接受来自这个有序图谱的空间共定位但分子异质性的输入,并询问它们的细胞表面分子表达如何影响伴侣选择。细胞表面免疫球蛋白在凯尼恩细胞中广泛耗尽,我们认为这允许它们与分子异质伙伴形成连接。这个模型可以解释发育相同的神经元如何获得不同的连接身份。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信