Zoila I Alvarez-Aponte, Rebecca R Procknow, Michiko E Taga
{"title":"The Corrinoid Model for Dissecting Microbial Community Interactions Across Scales.","authors":"Zoila I Alvarez-Aponte, Rebecca R Procknow, Michiko E Taga","doi":"10.1146/annurev-micro-051024-044734","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial communities in different environments have major impacts on global nutrient cycling and on the health of host organisms. However, the complexity of microbial communities complicates the investigation of how interactions among numerous microbial species, each with distinct features and metabolic capabilities, affect global processes. In this review, we describe the corrinoid model for investigating microbial community interactions across scales, from individual microbes to complex natural communities. Corrinoids are the vitamin B12 (cobalamin) family of organometallic cofactors. While numerous metabolic processes across all domains of life require corrinoids, only a fraction of bacterial and archaeal species produce them. This structurally diverse set of shared nutrients influences community structure in different ways. Knowledge about corrinoid biology at each scale informs and reinforces a robust model that can be expanded to increase our understanding of microbial communities.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":" ","pages":""},"PeriodicalIF":9.9000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12416548/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-micro-051024-044734","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial communities in different environments have major impacts on global nutrient cycling and on the health of host organisms. However, the complexity of microbial communities complicates the investigation of how interactions among numerous microbial species, each with distinct features and metabolic capabilities, affect global processes. In this review, we describe the corrinoid model for investigating microbial community interactions across scales, from individual microbes to complex natural communities. Corrinoids are the vitamin B12 (cobalamin) family of organometallic cofactors. While numerous metabolic processes across all domains of life require corrinoids, only a fraction of bacterial and archaeal species produce them. This structurally diverse set of shared nutrients influences community structure in different ways. Knowledge about corrinoid biology at each scale informs and reinforces a robust model that can be expanded to increase our understanding of microbial communities.
期刊介绍:
Annual Review of Microbiology is a Medical and Microbiology Journal and published by Annual Reviews Inc. The Annual Review of Microbiology, in publication since 1947, covers significant developments in the field of microbiology, encompassing bacteria, archaea, viruses, and unicellular eukaryotes. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The Impact Factor of Annual Review of Microbiology is 10.242 (2024) Impact factor. The Annual Review of Microbiology Journal is Indexed with Pubmed, Scopus, UGC (University Grants Commission).