Xiaohui Ju, Chuanrui Chen, Cagatay M Oral, Semih Sevim, Ramin Golestanian, Mengmeng Sun, Negin Bouzari, Xiankun Lin, Mario Urso, Jong Seok Nam, Yujang Cho, Xia Peng, Fabian C Landers, Shihao Yang, Azin Adibi, Nahid Taz, Raphael Wittkowski, Daniel Ahmed, Wei Wang, Veronika Magdanz, Mariana Medina-Sánchez, Maria Guix, Naimat Bari, Bahareh Behkam, Raymond Kapral, Yaxin Huang, Jinyao Tang, Ben Wang, Konstantin Morozov, Alexander Leshansky, Sarmad Ahmad Abbasi, Hongsoo Choi, Subhadip Ghosh, Bárbara Borges Fernandes, Giuseppe Battaglia, Peer Fischer, Ambarish Ghosh, Beatriz Jurado Sánchez, Alberto Escarpa, Quentin Martinet, Jérémie Palacci, Eric Lauga, Jeffrey Moran, Miguel A Ramos-Docampo, Brigitte Städler, Ramón Santiago Herrera Restrepo, Gilad Yossifon, James D Nicholas, Jordi Ignés-Mullol, Josep Puigmartí-Luis, Yutong Liu, Lauren D Zarzar, C Wyatt Shields, Longqiu Li, Shanshan Li, Xing Ma, David H Gracias, Orlin Velev, Samuel Sánchez, Maria Jose Esplandiu, Juliane Simmchen, Antonio Lobosco, Sarthak Misra, Zhiguang Wu, Jinxing Li, Alexander Kuhn, Amir Nourhani, Tijana Maric, Ze Xiong, Amirreza Aghakhani, Yongfeng Mei, Yingfeng Tu, Fei Peng, Eric Diller, Mahmut Selman Sakar, Ayusman Sen, Junhui Law, Yu Sun, Abdon Pena-Francesch, Katherine Villa, Huaizhi Li, Donglei Emma Fan, Kang Liang, Tony Jun Huang, Xiang-Zhong Chen, Songsong Tang, Xueji Zhang, Jizhai Cui, Hong Wang, Wei Gao, Vineeth Kumar Bandari, Oliver G Schmidt, Xianghua Wu, Jianguo Guan, Metin Sitti, Bradley J Nelson, Salvador Pané, Li Zhang, Hamed Shahsavan, Qiang He, Il-Doo Kim, Joseph Wang, Martin Pumera
{"title":"Technology Roadmap of Micro/Nanorobots.","authors":"Xiaohui Ju, Chuanrui Chen, Cagatay M Oral, Semih Sevim, Ramin Golestanian, Mengmeng Sun, Negin Bouzari, Xiankun Lin, Mario Urso, Jong Seok Nam, Yujang Cho, Xia Peng, Fabian C Landers, Shihao Yang, Azin Adibi, Nahid Taz, Raphael Wittkowski, Daniel Ahmed, Wei Wang, Veronika Magdanz, Mariana Medina-Sánchez, Maria Guix, Naimat Bari, Bahareh Behkam, Raymond Kapral, Yaxin Huang, Jinyao Tang, Ben Wang, Konstantin Morozov, Alexander Leshansky, Sarmad Ahmad Abbasi, Hongsoo Choi, Subhadip Ghosh, Bárbara Borges Fernandes, Giuseppe Battaglia, Peer Fischer, Ambarish Ghosh, Beatriz Jurado Sánchez, Alberto Escarpa, Quentin Martinet, Jérémie Palacci, Eric Lauga, Jeffrey Moran, Miguel A Ramos-Docampo, Brigitte Städler, Ramón Santiago Herrera Restrepo, Gilad Yossifon, James D Nicholas, Jordi Ignés-Mullol, Josep Puigmartí-Luis, Yutong Liu, Lauren D Zarzar, C Wyatt Shields, Longqiu Li, Shanshan Li, Xing Ma, David H Gracias, Orlin Velev, Samuel Sánchez, Maria Jose Esplandiu, Juliane Simmchen, Antonio Lobosco, Sarthak Misra, Zhiguang Wu, Jinxing Li, Alexander Kuhn, Amir Nourhani, Tijana Maric, Ze Xiong, Amirreza Aghakhani, Yongfeng Mei, Yingfeng Tu, Fei Peng, Eric Diller, Mahmut Selman Sakar, Ayusman Sen, Junhui Law, Yu Sun, Abdon Pena-Francesch, Katherine Villa, Huaizhi Li, Donglei Emma Fan, Kang Liang, Tony Jun Huang, Xiang-Zhong Chen, Songsong Tang, Xueji Zhang, Jizhai Cui, Hong Wang, Wei Gao, Vineeth Kumar Bandari, Oliver G Schmidt, Xianghua Wu, Jianguo Guan, Metin Sitti, Bradley J Nelson, Salvador Pané, Li Zhang, Hamed Shahsavan, Qiang He, Il-Doo Kim, Joseph Wang, Martin Pumera","doi":"10.1021/acsnano.5c03911","DOIUrl":null,"url":null,"abstract":"<p><p>Inspired by Richard Feynman's 1959 lecture and the 1966 film <i>Fantastic Voyage</i>, the field of micro/nanorobots has evolved from science fiction to reality, with significant advancements in biomedical and environmental applications. Despite the rapid progress, the deployment of functional micro/nanorobots remains limited. This review of the technology roadmap identifies key challenges hindering their widespread use, focusing on propulsion mechanisms, fundamental theoretical aspects, collective behavior, material design, and embodied intelligence. We explore the current state of micro/nanorobot technology, with an emphasis on applications in biomedicine, environmental remediation, analytical sensing, and other industrial technological aspects. Additionally, we analyze issues related to scaling up production, commercialization, and regulatory frameworks that are crucial for transitioning from research to practical applications. We also emphasize the need for interdisciplinary collaboration to address both technical and nontechnical challenges, such as sustainability, ethics, and business considerations. Finally, we propose a roadmap for future research to accelerate the development of micro/nanorobots, positioning them as essential tools for addressing grand challenges and enhancing the quality of life.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c03911","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Inspired by Richard Feynman's 1959 lecture and the 1966 film Fantastic Voyage, the field of micro/nanorobots has evolved from science fiction to reality, with significant advancements in biomedical and environmental applications. Despite the rapid progress, the deployment of functional micro/nanorobots remains limited. This review of the technology roadmap identifies key challenges hindering their widespread use, focusing on propulsion mechanisms, fundamental theoretical aspects, collective behavior, material design, and embodied intelligence. We explore the current state of micro/nanorobot technology, with an emphasis on applications in biomedicine, environmental remediation, analytical sensing, and other industrial technological aspects. Additionally, we analyze issues related to scaling up production, commercialization, and regulatory frameworks that are crucial for transitioning from research to practical applications. We also emphasize the need for interdisciplinary collaboration to address both technical and nontechnical challenges, such as sustainability, ethics, and business considerations. Finally, we propose a roadmap for future research to accelerate the development of micro/nanorobots, positioning them as essential tools for addressing grand challenges and enhancing the quality of life.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.