Stable Tensile-Strained Pt Single Atomic Layer Catalysts on α-MoC for Efficient Alkaline Hydrogen Evolution.

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-06-27 DOI:10.1021/acsnano.5c05972
Yaohui Zhao, Jiapeng Huang, Ke Zhang, Yanan Li, Zixin Ge, Yangzi Zheng, Shangdong Ji, Junhao Lu, Yuan Ren, Chao Wu, Mingshang Jin
{"title":"Stable Tensile-Strained Pt Single Atomic Layer Catalysts on α-MoC for Efficient Alkaline Hydrogen Evolution.","authors":"Yaohui Zhao, Jiapeng Huang, Ke Zhang, Yanan Li, Zixin Ge, Yangzi Zheng, Shangdong Ji, Junhao Lu, Yuan Ren, Chao Wu, Mingshang Jin","doi":"10.1021/acsnano.5c05972","DOIUrl":null,"url":null,"abstract":"<p><p>Developing Pt-based core-shell catalysts with ultralow Pt loading, superior performance, and extended durability holds tremendous potential for advancing electrochemical energy storage and conversion technologies. However, current synthetic limitations persist in achieving atomically efficient Pt monolayer deposition on nonprecious metal substrates, hindering the maximization of Pt atomic utilization for cost-effective catalyst design. Here, we demonstrate a galvanic replacement strategy to synthesize tensile-strained platinum single-atom-layer (Pt SAL) on α-MoC substrates. The Pt SAL catalysts enable cooperative catalysis between adjacent Pt sites while maintaining nearly 100% atomic utilization efficiency. For alkaline hydrogen evolution, the Pt SAL/α-MoC catalyst exhibits optimized reaction energetics, reducing activation barriers for water dissociation, hydrogen adsorption, and H<sub>2</sub> desorption compared to typical Pt/C. As a result, the Pt SAL catalysts exhibit superior hydrogen evolution reaction (HER) performance, with a mass activity of 1.71 A mg<sub>Pt</sub><sup>-1</sup> at an overpotential of 50 mV, surpassing commercial Pt/C by 6.35-fold and single-atom catalysts by 7.68-fold. Remarkably, the Pt SAL catalysts reveal negligible activity decay after 10,000 cycles, with density functional theory (DFT) calculations attributing this stability to strong Pt-Mo interfacial bonding. <i>In situ</i> Raman spectroscopic studies reveal dynamic interfacial water restructuring that accelerates reaction kinetics. This work establishes a versatile synthesis approach for noble metal SAL catalysts and explores their role in designing high-performance electrocatalysts for heterogeneous catalysis.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c05972","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing Pt-based core-shell catalysts with ultralow Pt loading, superior performance, and extended durability holds tremendous potential for advancing electrochemical energy storage and conversion technologies. However, current synthetic limitations persist in achieving atomically efficient Pt monolayer deposition on nonprecious metal substrates, hindering the maximization of Pt atomic utilization for cost-effective catalyst design. Here, we demonstrate a galvanic replacement strategy to synthesize tensile-strained platinum single-atom-layer (Pt SAL) on α-MoC substrates. The Pt SAL catalysts enable cooperative catalysis between adjacent Pt sites while maintaining nearly 100% atomic utilization efficiency. For alkaline hydrogen evolution, the Pt SAL/α-MoC catalyst exhibits optimized reaction energetics, reducing activation barriers for water dissociation, hydrogen adsorption, and H2 desorption compared to typical Pt/C. As a result, the Pt SAL catalysts exhibit superior hydrogen evolution reaction (HER) performance, with a mass activity of 1.71 A mgPt-1 at an overpotential of 50 mV, surpassing commercial Pt/C by 6.35-fold and single-atom catalysts by 7.68-fold. Remarkably, the Pt SAL catalysts reveal negligible activity decay after 10,000 cycles, with density functional theory (DFT) calculations attributing this stability to strong Pt-Mo interfacial bonding. In situ Raman spectroscopic studies reveal dynamic interfacial water restructuring that accelerates reaction kinetics. This work establishes a versatile synthesis approach for noble metal SAL catalysts and explores their role in designing high-performance electrocatalysts for heterogeneous catalysis.

α-MoC上稳定拉伸应变Pt单原子层催化剂的高效碱性析氢。
开发具有超低铂负载、优异性能和超长耐久性的铂基核壳催化剂,对推进电化学储能和转化技术具有巨大的潜力。然而,目前的合成限制仍然存在于实现铂原子高效单层沉积在非贵金属衬底上,阻碍了铂原子最大化利用以实现成本效益的催化剂设计。在这里,我们展示了在α-MoC衬底上合成拉伸应变铂单原子层(Pt SAL)的电替换策略。Pt SAL催化剂可以在相邻Pt位点之间协同催化,同时保持近100%的原子利用率。对于碱性析氢,与典型Pt/C相比,Pt SAL/α-MoC催化剂表现出优化的反应能量,降低了水解离、氢吸附和H2脱附的激活障碍。结果表明,Pt SAL催化剂表现出优异的析氢反应(HER)性能,在过电位为50 mV时,其质量活性为1.71 a mgPt-1,比商用Pt/C催化剂高6.35倍,比单原子催化剂高7.68倍。值得注意的是,经过10,000次循环后,Pt SAL催化剂的活性衰减可以忽略不计,密度泛函理论(DFT)计算将这种稳定性归因于强Pt- mo界面键合。原位拉曼光谱研究揭示了加速反应动力学的动态界面水重构。本工作建立了贵金属SAL催化剂的通用合成方法,并探讨了其在设计高性能多相催化电催化剂中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信