In-Plane Anisotropic Two-Dimensional ReSe2 Optoelectronic Memristor for a Polarization-Sensitive Neuromorphic Vision System.

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-06-27 DOI:10.1021/acsnano.5c08221
Yongxing Zhu, Ye Tao, Zhongqiang Wang, Jingyao Bian, Zhuangzhuang Li, Meng Qi, Ya Lin, Xiaoning Zhao, Haiyang Xu, Yichun Liu
{"title":"In-Plane Anisotropic Two-Dimensional ReSe<sub>2</sub> Optoelectronic Memristor for a Polarization-Sensitive Neuromorphic Vision System.","authors":"Yongxing Zhu, Ye Tao, Zhongqiang Wang, Jingyao Bian, Zhuangzhuang Li, Meng Qi, Ya Lin, Xiaoning Zhao, Haiyang Xu, Yichun Liu","doi":"10.1021/acsnano.5c08221","DOIUrl":null,"url":null,"abstract":"<p><p>A polarization-sensitive neuromorphic vision system (PNVS) that synchronously possesses the capacities of polarized light perception and neuromorphic computing enables the detection of potential information or hidden features. While developing a polarization-sensitive optoelectronic memristor presents an intriguing avenue for building the foundational hardware of PNVS, it has proven challenging. In this work, a polarization-sensitive optoelectronic memristor based on the in-plane anisotropic two-dimensional ReSe<sub>2</sub> is proposed. Thanks to the meticulous device structure design, the angle-dependent synaptic plasticity of the device is demonstrated. Further, the image preprocessing and recognition functions are implemented under the circumstances of 0 and 90° polarized light, and the learning accuracy is improved from 81.1 to 86.8 and 90.4%, respectively. To reveal the mining capacity of hidden information, the surface flaw detection application is finally demonstrated through enhancement in the degree of linear polarization (DoLP). This study provides an approach to developing polarization-sensitive neuromorphic devices for future polarization vision systems used in intelligent vehicles and robot vision.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c08221","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A polarization-sensitive neuromorphic vision system (PNVS) that synchronously possesses the capacities of polarized light perception and neuromorphic computing enables the detection of potential information or hidden features. While developing a polarization-sensitive optoelectronic memristor presents an intriguing avenue for building the foundational hardware of PNVS, it has proven challenging. In this work, a polarization-sensitive optoelectronic memristor based on the in-plane anisotropic two-dimensional ReSe2 is proposed. Thanks to the meticulous device structure design, the angle-dependent synaptic plasticity of the device is demonstrated. Further, the image preprocessing and recognition functions are implemented under the circumstances of 0 and 90° polarized light, and the learning accuracy is improved from 81.1 to 86.8 and 90.4%, respectively. To reveal the mining capacity of hidden information, the surface flaw detection application is finally demonstrated through enhancement in the degree of linear polarization (DoLP). This study provides an approach to developing polarization-sensitive neuromorphic devices for future polarization vision systems used in intelligent vehicles and robot vision.

面向偏振敏感神经形态视觉系统的平面内各向异性二维ReSe2光电忆阻器。
偏振敏感神经形态视觉系统(PNVS)同时具有偏振光感知和神经形态计算能力,能够检测潜在信息或隐藏特征。虽然开发极化敏感光电忆阻器为构建PNVS的基础硬件提供了一个有趣的途径,但它已被证明具有挑战性。本文提出了一种基于平面内各向异性二维ReSe2的极化敏感光电忆阻器。通过细致的器件结构设计,展示了器件的角度依赖性突触可塑性。在0°偏振光和90°偏振光情况下实现图像预处理和识别功能,学习精度分别从81.1提高到86.8和90.4%。为了揭示隐藏信息的挖掘能力,最后通过增强线偏振度(DoLP)来展示表面缺陷检测的应用。该研究为未来用于智能车辆和机器人视觉的极化视觉系统的极化敏感神经形态装置的开发提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信