Breather solutions and higher-order rogue wave solutions to the modified complex short pulse equation

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Cong Lv , Deqin Qiu , Yongshuai Zhang
{"title":"Breather solutions and higher-order rogue wave solutions to the modified complex short pulse equation","authors":"Cong Lv ,&nbsp;Deqin Qiu ,&nbsp;Yongshuai Zhang","doi":"10.1016/j.aml.2025.109664","DOIUrl":null,"url":null,"abstract":"<div><div>Breather solutions and higher-order rogue wave solutions with two arbitrary parameters <span><math><mi>a</mi></math></span> and <span><math><mi>c</mi></math></span> of the modified complex short pulse (mcSP) equation are generated based on the reciprocal transformation and the Darboux transformation. We construct the <span><math><mi>n</mi></math></span>th-order Darboux transformation in terms of determinants whose entries are represented by initial eigenfunctions and seed solutions. Furthermore, the formulae for the higher-order rogue wave solutions of the mcSP equation are obtained by using the Taylor expansion with the help of degenerate eigenvalues <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>→</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>c</mi><mo>−</mo><mfrac><mrow><mi>i</mi><mi>a</mi><msqrt><mrow><mn>1</mn><mo>−</mo><mn>4</mn><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi></mrow></math></span>. The analyticity of first-order rogue wave solution is studied. Some figures illustrate dynamic structures of the rogue waves from the first to the third order. The effect of the choice of parameters on the rogue waves are specifically discussed.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"171 ","pages":"Article 109664"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002149","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Breather solutions and higher-order rogue wave solutions with two arbitrary parameters a and c of the modified complex short pulse (mcSP) equation are generated based on the reciprocal transformation and the Darboux transformation. We construct the nth-order Darboux transformation in terms of determinants whose entries are represented by initial eigenfunctions and seed solutions. Furthermore, the formulae for the higher-order rogue wave solutions of the mcSP equation are obtained by using the Taylor expansion with the help of degenerate eigenvalues λja2cia14a2c22,j=1,2,,n. The analyticity of first-order rogue wave solution is studied. Some figures illustrate dynamic structures of the rogue waves from the first to the third order. The effect of the choice of parameters on the rogue waves are specifically discussed.
修正复短脉冲方程的呼吸解和高阶异常波解
基于倒易变换和达布变换,得到了修正复短脉冲方程的呼吸解和具有任意参数a和c的高阶异常波解。我们用行列式来构造n阶达布变换,行列式的项由初始特征函数和种子解表示。此外,利用退化特征值λj→a2c−ia1−4a2c22,j=1,2,…,n,利用泰勒展开式得到了mcSP方程的高阶异常波解的表达式。研究了一阶异常波解的解析性。一些图表说明了从一阶到三阶的异常浪的动力结构。具体讨论了参数选择对异常波的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信