Recent advancements in carbon capture, utilization, and sequestration technologies

Falguni Guha , Md. Nurul Abser , Bablu Hira Mandal , Bijoy Kumar Mondal
{"title":"Recent advancements in carbon capture, utilization, and sequestration technologies","authors":"Falguni Guha ,&nbsp;Md. Nurul Abser ,&nbsp;Bablu Hira Mandal ,&nbsp;Bijoy Kumar Mondal","doi":"10.1016/j.scowo.2025.100075","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon dioxide (CO<sub>2</sub>) emissions pose a critical environmental challenge, making the development of efficient and economically feasible carbon capture, utilization, and sequestration technologies essential for the successful implementation of global carbon reduction plans to combat climate change. In 2023, global CO<sub>2</sub> emissions reached 41.41 billion tons, with 89.6 % (37.15 billion tons) originating from the combustion of fossil fuels. This comprehensive review examines advanced CO<sub>2</sub> capture techniques, such as absorption, adsorption, microbial carbon capture, membrane separation, and various utilization methods, such as physical applications and chemical conversions. The abundant active sites of metal-doped mesoporous bimetallic nanomaterials make them ideal for CO<sub>2</sub> capture and catalytic activity in chemical conversions. Electrochemical reduction or electrocatalytic conversion of CO<sub>2</sub> facilitates CO<sub>2</sub> utilization under mild reaction conditions, controllable reaction rates, and high product selectivity through applied potentials. Microbial conversion can produce valuable products such as acetate, protein, and folate (vitamin B<sub>9</sub>). If hydrogen fuels could replace fossil fuels, the development of a technology to simultaneously produce hydrogen and carbonaceous nanomaterials from fossil fuels would provide a sustainable solution for CO<sub>2</sub> management and contribute to global environmental protection.</div></div>","PeriodicalId":101197,"journal":{"name":"Sustainable Chemistry One World","volume":"7 ","pages":"Article 100075"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry One World","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950357425000320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon dioxide (CO2) emissions pose a critical environmental challenge, making the development of efficient and economically feasible carbon capture, utilization, and sequestration technologies essential for the successful implementation of global carbon reduction plans to combat climate change. In 2023, global CO2 emissions reached 41.41 billion tons, with 89.6 % (37.15 billion tons) originating from the combustion of fossil fuels. This comprehensive review examines advanced CO2 capture techniques, such as absorption, adsorption, microbial carbon capture, membrane separation, and various utilization methods, such as physical applications and chemical conversions. The abundant active sites of metal-doped mesoporous bimetallic nanomaterials make them ideal for CO2 capture and catalytic activity in chemical conversions. Electrochemical reduction or electrocatalytic conversion of CO2 facilitates CO2 utilization under mild reaction conditions, controllable reaction rates, and high product selectivity through applied potentials. Microbial conversion can produce valuable products such as acetate, protein, and folate (vitamin B9). If hydrogen fuels could replace fossil fuels, the development of a technology to simultaneously produce hydrogen and carbonaceous nanomaterials from fossil fuels would provide a sustainable solution for CO2 management and contribute to global environmental protection.
碳捕获、利用和封存技术的最新进展
二氧化碳(CO2)排放是一个严峻的环境挑战,因此开发高效且经济可行的碳捕获、利用和封存技术对于成功实施全球碳减排计划以应对气候变化至关重要。2023年,全球二氧化碳排放量达到414.1亿吨,其中89.6 %(371.5亿吨)来自化石燃料燃烧。本文综述了先进的二氧化碳捕获技术,如吸收、吸附、微生物碳捕获、膜分离,以及各种利用方法,如物理应用和化学转化。金属掺杂的介孔双金属纳米材料具有丰富的活性位点,使其在化学转化中具有理想的CO2捕获和催化活性。CO2的电化学还原或电催化转化使CO2在温和的反应条件下利用,反应速率可控,通过应用电位提高产物选择性。微生物转化可以产生有价值的产品,如醋酸盐、蛋白质和叶酸(维生素B9)。如果氢燃料可以取代化石燃料,那么从化石燃料中同时生产氢和含碳纳米材料的技术的发展将为二氧化碳管理提供一个可持续的解决方案,并有助于全球环境保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信