Improving extracellular matrix penetration with biocatalytic metal-organic framework nanoswimmers.

Qianfan Chen, Si Liu, Peijun Qin, Jueyi Xue, Peiji Deng, Ziping Li, John Whitelock, Tianruo Guo, Kang Liang
{"title":"Improving extracellular matrix penetration with biocatalytic metal-organic framework nanoswimmers.","authors":"Qianfan Chen, Si Liu, Peijun Qin, Jueyi Xue, Peiji Deng, Ziping Li, John Whitelock, Tianruo Guo, Kang Liang","doi":"10.1039/d5tb00509d","DOIUrl":null,"url":null,"abstract":"<p><p>The development of self-propelled nanomotors offers a promising strategy to enhance targeted drug delivery efficiency in cancer therapy. Active motion is believed to aid nanomotors in overcoming the physical barriers of the tumor microenvironment, allowing for deep tissue penetration; however, this crucial concept lacks detailed mechanistic understanding. In this study, we report catalase and collagenase dual-enzyme functionalized zeolitic imidazolate framework-90 (ZIF-90) nanomotors. Catalase enables the nanomotors with self-propulsion in the presence of low amount of hydrogen peroxide, while collagenase enables catalytic decomposition of collagen, a major component of the extracellular matrix (ECM), thereby enhancing motility and facilitating deeper penetration into the ECM. Experimental and computational studies elucidated the detailed mechanisms governing ECM penetration kinetics. Using a three-dimensional tumor spheroid model, the nanomotors demonstrated enhanced tissue penetration, leading to improved drug delivery and a significant reduction in cell viability. These findings underscore the potential of self-propelled nanomotors to improve drug delivery efficiency in solid tumors by leveraging both biocatalytic activity and active motion to navigate biological barriers.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5tb00509d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The development of self-propelled nanomotors offers a promising strategy to enhance targeted drug delivery efficiency in cancer therapy. Active motion is believed to aid nanomotors in overcoming the physical barriers of the tumor microenvironment, allowing for deep tissue penetration; however, this crucial concept lacks detailed mechanistic understanding. In this study, we report catalase and collagenase dual-enzyme functionalized zeolitic imidazolate framework-90 (ZIF-90) nanomotors. Catalase enables the nanomotors with self-propulsion in the presence of low amount of hydrogen peroxide, while collagenase enables catalytic decomposition of collagen, a major component of the extracellular matrix (ECM), thereby enhancing motility and facilitating deeper penetration into the ECM. Experimental and computational studies elucidated the detailed mechanisms governing ECM penetration kinetics. Using a three-dimensional tumor spheroid model, the nanomotors demonstrated enhanced tissue penetration, leading to improved drug delivery and a significant reduction in cell viability. These findings underscore the potential of self-propelled nanomotors to improve drug delivery efficiency in solid tumors by leveraging both biocatalytic activity and active motion to navigate biological barriers.

生物催化金属-有机骨架纳米游泳剂改善细胞外基质渗透。
自推进纳米马达的发展为提高肿瘤治疗的靶向给药效率提供了一种很有前景的策略。主动运动被认为有助于纳米马达克服肿瘤微环境的物理障碍,允许深入组织渗透;然而,这一关键概念缺乏详细的机制理解。在这项研究中,我们报道了过氧化氢酶和胶原酶双酶功能化的咪唑酸分子筛框架-90 (ZIF-90)纳米马达。过氧化氢酶使纳米马达在少量过氧化氢的存在下具有自我推进能力,而胶原酶能够催化分解胶原蛋白,胶原蛋白是细胞外基质(ECM)的主要成分,从而增强运动性并促进更深地渗透到ECM中。实验和计算研究阐明了控制ECM渗透动力学的详细机制。利用三维肿瘤球体模型,纳米马达显示出增强的组织穿透性,从而改善药物传递和显著降低细胞活力。这些发现强调了自行式纳米马达的潜力,通过利用生物催化活性和主动运动来穿越生物屏障,提高实体肿瘤的药物输送效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信