Direct O2 Activation by Ligand-Constrained Pnictogen Complexes: Contrasting Mechanisms and OAT Reactivity across the P, Sb, and Bi Triad.

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
JACS Au Pub Date : 2025-06-03 eCollection Date: 2025-06-23 DOI:10.1021/jacsau.5c00371
Sung Gyu Kim, Jinrok Oh, Dongyoung Kim, Dae Eui Choi, Seung Jun Hwang
{"title":"Direct O<sub>2</sub> Activation by Ligand-Constrained Pnictogen Complexes: Contrasting Mechanisms and OAT Reactivity across the P, Sb, and Bi Triad.","authors":"Sung Gyu Kim, Jinrok Oh, Dongyoung Kim, Dae Eui Choi, Seung Jun Hwang","doi":"10.1021/jacsau.5c00371","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic structure-reactivity relationships are fundamental to advancing the redox chemistry of main-group elements. Herein, we investigate a series of planarized <i>C</i> <sub>2v</sub> pnictogen complexes (Pn = P, Sb, Bi) to correlate their electronic structures with reactivity trends across the pnictogen group. Through single-crystal X-ray diffraction, UV-vis spectroscopy, electrochemical measurements, and density functional theory (DFT) calculations, we demonstrate a systematic reduction in HOMO-LUMO gap progressing from phosphorus to bismuth, accompanied by enhanced stabilization of the nucleophilic lone pair. Oxygen atom transfer (OAT) reactivity, probed using triphenylpnictines (PnPh<sub>3</sub>, Pn = P, Sb, Bi) as mechanistic and thermodynamic reporters, reveals distinctive oxidation pathways. The phosphorus complex (<b>1</b>) undergoes a four-electron oxidation to yield a dioxophosphorane species, whereas the heavier congeners (<b>2</b> and <b>3</b>) generate monooxygenated Pn=O products exclusively. This mechanistic divergence is attributed to pronounced orbital contraction in heavier pnictogens, which stabilizes the lone pair and attenuates its participation in multielectron redox processes. Computational and experimental analyses corroborate these trends, with Hammett studies and p<i>K</i> <sub>a</sub> calculations of peroxo intermediates revealing enhanced nucleophilicity of the oxygen center with increasing pnictogen atomic weight, thereby influencing the OAT mechanism. These findings provide fundamental insights into periodic trends governing oxidation chemistry and demonstrate how strategic ligand design can modulate pnictogen-based multielectron reactivity. The broader implications extend to small-molecule activation and catalysis, offering a predictive framework for designing advanced redox-active main-group systems.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 6","pages":"2779-2791"},"PeriodicalIF":8.5000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188391/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.5c00371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/23 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electronic structure-reactivity relationships are fundamental to advancing the redox chemistry of main-group elements. Herein, we investigate a series of planarized C 2v pnictogen complexes (Pn = P, Sb, Bi) to correlate their electronic structures with reactivity trends across the pnictogen group. Through single-crystal X-ray diffraction, UV-vis spectroscopy, electrochemical measurements, and density functional theory (DFT) calculations, we demonstrate a systematic reduction in HOMO-LUMO gap progressing from phosphorus to bismuth, accompanied by enhanced stabilization of the nucleophilic lone pair. Oxygen atom transfer (OAT) reactivity, probed using triphenylpnictines (PnPh3, Pn = P, Sb, Bi) as mechanistic and thermodynamic reporters, reveals distinctive oxidation pathways. The phosphorus complex (1) undergoes a four-electron oxidation to yield a dioxophosphorane species, whereas the heavier congeners (2 and 3) generate monooxygenated Pn=O products exclusively. This mechanistic divergence is attributed to pronounced orbital contraction in heavier pnictogens, which stabilizes the lone pair and attenuates its participation in multielectron redox processes. Computational and experimental analyses corroborate these trends, with Hammett studies and pK a calculations of peroxo intermediates revealing enhanced nucleophilicity of the oxygen center with increasing pnictogen atomic weight, thereby influencing the OAT mechanism. These findings provide fundamental insights into periodic trends governing oxidation chemistry and demonstrate how strategic ligand design can modulate pnictogen-based multielectron reactivity. The broader implications extend to small-molecule activation and catalysis, offering a predictive framework for designing advanced redox-active main-group systems.

由配体约束的pnicogen复合物直接激活O2: P, Sb和Bi三元组的对比机制和OAT反应性
电子结构-反应性关系是推进主族元素氧化还原化学的基础。在此,我们研究了一系列平面化的c2v烟原配合物(Pn = P, Sb, Bi),以将它们的电子结构与整个烟原基团的反应性趋势联系起来。通过单晶x射线衍射、紫外-可见光谱、电化学测量和密度泛函理论(DFT)计算,我们证明了从磷到铋的HOMO-LUMO间隙的系统性减少,伴随着亲核孤对的稳定性增强。利用三苯基烟碱(PnPh3, Pn = P, Sb, Bi)作为机械和热力学报告者,探测了氧原子转移(OAT)反应活性,揭示了独特的氧化途径。磷配合物(1)经过四电子氧化生成二氧磷烷,而较重的同系物(2和3)只生成单氧Pn=O产物。这种机制上的差异归因于较重的烟原中明显的轨道收缩,这稳定了孤对并减弱了其在多电子氧化还原过程中的参与。计算和实验分析证实了这些趋势,Hammett研究和过氧中间体的pK - a计算表明,氧中心的亲核性随着pnicogen原子量的增加而增强,从而影响OAT机制。这些发现为氧化化学的周期性趋势提供了基本的见解,并证明了战略性配体设计如何调节基于光原的多电子反应性。更广泛的意义延伸到小分子活化和催化,为设计先进的氧化还原活性主基团系统提供了预测框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信