A Sinking Approach to Explore Arbitrary Areas in Free Energy Landscapes.

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
JACS Au Pub Date : 2025-06-02 eCollection Date: 2025-06-23 DOI:10.1021/jacsau.5c00460
Zhijun Pan, Maodong Li, Dechin Chen, Yi Isaac Yang
{"title":"A Sinking Approach to Explore Arbitrary Areas in Free Energy Landscapes.","authors":"Zhijun Pan, Maodong Li, Dechin Chen, Yi Isaac Yang","doi":"10.1021/jacsau.5c00460","DOIUrl":null,"url":null,"abstract":"<p><p>To address the time-scale limitations in molecular dynamics (MD) simulations, numerous enhanced sampling methods have been developed to expedite the exploration of complex free energy landscapes. A commonly employed approach accelerates the sampling of degrees of freedom associated with predefined collective variables (CVs), which typically tend to traverse the entire CV range. However, in many scenarios, the focus of interest is on specific regions within the CV space. In this paper, we introduce a novel \"sinking\" approach that enables enhanced sampling of arbitrary areas within the CV space. This method, referred to as SinkMeta, \"sinks\" the interior bias potential to create a restraining potential \"cliff\" at the grid edges, thus confining the exploration of CVs in MD simulations to a predefined area. SinkMeta requires minimal sampling steps to estimate the free energy landscape for CV subspaces of various shapes and dimensions, offering an efficient and flexible solution for sampling minimum free energy paths in high-dimensional spaces. We believe that SinkMeta will pioneer a new paradigm for sampling partial phase spaces and provide an efficient and straightforward way to study the interaction of drugs with biomolecules such as proteins and DNA in MD simulations.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 6","pages":"2898-2908"},"PeriodicalIF":8.5000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188410/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.5c00460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/23 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To address the time-scale limitations in molecular dynamics (MD) simulations, numerous enhanced sampling methods have been developed to expedite the exploration of complex free energy landscapes. A commonly employed approach accelerates the sampling of degrees of freedom associated with predefined collective variables (CVs), which typically tend to traverse the entire CV range. However, in many scenarios, the focus of interest is on specific regions within the CV space. In this paper, we introduce a novel "sinking" approach that enables enhanced sampling of arbitrary areas within the CV space. This method, referred to as SinkMeta, "sinks" the interior bias potential to create a restraining potential "cliff" at the grid edges, thus confining the exploration of CVs in MD simulations to a predefined area. SinkMeta requires minimal sampling steps to estimate the free energy landscape for CV subspaces of various shapes and dimensions, offering an efficient and flexible solution for sampling minimum free energy paths in high-dimensional spaces. We believe that SinkMeta will pioneer a new paradigm for sampling partial phase spaces and provide an efficient and straightforward way to study the interaction of drugs with biomolecules such as proteins and DNA in MD simulations.

探索自由能景观中任意区域的下沉方法。
为了解决分子动力学(MD)模拟的时间尺度限制,许多增强的采样方法已经开发出来,以加快对复杂自由能景观的探索。通常采用的方法是加速与预定义的集体变量(CV)相关的自由度采样,这些自由度通常倾向于遍历整个CV范围。然而,在许多情况下,关注的焦点是CV空间中的特定区域。在本文中,我们引入了一种新的“下沉”方法,可以增强对CV空间内任意区域的采样。这种方法被称为SinkMeta,它将内部偏置电位“下沉”,在网格边缘形成一个抑制电位“悬崖”,从而将MD模拟中cv的探索限制在一个预定义的区域。SinkMeta需要最小的采样步骤来估计各种形状和维度的CV子空间的自由能景观,为高维空间中的最小自由能路径采样提供了高效灵活的解决方案。我们相信,SinkMeta将开创部分相空间采样的新范式,并为在MD模拟中研究药物与生物分子(如蛋白质和DNA)的相互作用提供一种有效而直接的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信