Advancing precision dentistry: the integration of multi-omics and cutting-edge imaging technologies-a systematic review.

IF 1.8 Q3 DENTISTRY, ORAL SURGERY & MEDICINE
Frontiers in dental medicine Pub Date : 2025-06-12 eCollection Date: 2025-01-01 DOI:10.3389/fdmed.2025.1581738
Neelam Das
{"title":"Advancing precision dentistry: the integration of multi-omics and cutting-edge imaging technologies-a systematic review.","authors":"Neelam Das","doi":"10.3389/fdmed.2025.1581738","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The convergence of multi-omics, advanced imaging technologies, and artificial intelligence (AI) is reshaping diagnostic strategies in precision dentistry. This systematic review critically assesses how the integration of multi-omics (genomics, proteomics, metabolomics), advanced imaging modalities (CBCT, MRI), and AI-based techniques synergistically enhances diagnostic accuracy, clinical decision-making, and personalized care in dentistry.</p><p><strong>Methods: </strong>The review follows PRISMA 2020 guidelines. A total of 50 studies published between 2015 and 2024 were selected using a PICOS framework. Analytical tools included meta-analysis (Forest and Funnel plots), risk of bias assessment, VOS viewer-based bibliometric mapping, and GRADE evidence grading.</p><p><strong>Results: </strong>Multi-omics approaches revealed key biomarkers such as TP53, IL-1, and MMPs in early diagnosis. CBCT reduced diagnostic error by 35% (CI: 30%-40%), while MRI improved soft-tissue evaluation by 25% (CI: 18%-32%). AI tools, including convolutional neural networks and radiomics, led to a 40% reduction in diagnostic time (CI: 33%-45%) and improved lesion classification.</p><p><strong>Conclusion: </strong>Integrating AI with omics and imaging technologies enhances diagnostic precision in dentistry. Future efforts must address data standardization, ethical implementation, and validation through multicenter trials for clinical adoption.</p>","PeriodicalId":73077,"journal":{"name":"Frontiers in dental medicine","volume":"6 ","pages":"1581738"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12198191/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in dental medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdmed.2025.1581738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The convergence of multi-omics, advanced imaging technologies, and artificial intelligence (AI) is reshaping diagnostic strategies in precision dentistry. This systematic review critically assesses how the integration of multi-omics (genomics, proteomics, metabolomics), advanced imaging modalities (CBCT, MRI), and AI-based techniques synergistically enhances diagnostic accuracy, clinical decision-making, and personalized care in dentistry.

Methods: The review follows PRISMA 2020 guidelines. A total of 50 studies published between 2015 and 2024 were selected using a PICOS framework. Analytical tools included meta-analysis (Forest and Funnel plots), risk of bias assessment, VOS viewer-based bibliometric mapping, and GRADE evidence grading.

Results: Multi-omics approaches revealed key biomarkers such as TP53, IL-1, and MMPs in early diagnosis. CBCT reduced diagnostic error by 35% (CI: 30%-40%), while MRI improved soft-tissue evaluation by 25% (CI: 18%-32%). AI tools, including convolutional neural networks and radiomics, led to a 40% reduction in diagnostic time (CI: 33%-45%) and improved lesion classification.

Conclusion: Integrating AI with omics and imaging technologies enhances diagnostic precision in dentistry. Future efforts must address data standardization, ethical implementation, and validation through multicenter trials for clinical adoption.

推进精密牙科:多组学和尖端成像技术的整合-系统回顾。
背景:多组学、先进成像技术和人工智能(AI)的融合正在重塑精密牙科的诊断策略。本系统综述批判性地评估了多组学(基因组学、蛋白质组学、代谢组学)、先进成像模式(CBCT、MRI)和基于人工智能的技术如何协同提高牙科诊断准确性、临床决策和个性化护理。方法:按照PRISMA 2020指南进行综述。使用PICOS框架共选择了2015年至2024年间发表的50项研究。分析工具包括荟萃分析(森林图和漏斗图)、偏倚风险评估、基于VOS观众的文献计量作图和GRADE证据分级。结果:多组学方法揭示了TP53、IL-1和MMPs等关键生物标志物在早期诊断中的作用。CBCT将诊断错误率降低了35% (CI: 30%-40%),而MRI将软组织评估提高了25% (CI: 18%-32%)。包括卷积神经网络和放射组学在内的人工智能工具使诊断时间缩短了40% (CI: 33%-45%),并改善了病变分类。结论:将人工智能与组学、影像学技术相结合,提高了牙医学的诊断精度。未来的努力必须解决数据标准化、伦理实施和临床采用的多中心试验验证问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信