{"title":"Nonlight-Driven Aggregation-Induced Emission Luminogens for Bioimaging and Theranostics.","authors":"Yong Tian, Weigeng Huang, Zhijia Sheng, Dingyuan Yan, Dong Wang, Ben Zhong Tang","doi":"10.1021/cbmi.4c00108","DOIUrl":null,"url":null,"abstract":"<p><p>Aggregation-induced emission luminogens (AIEgens) have been prosperously developed and applied in the fields of optical imaging and theranostics since its establishment. Nowadays, AIEgens can fulfill nearly all requirements in optical imaging and theranostics with emission spectra ranging from visible to near-infrared wavelengths. Although a variety of AIEgens with varying wavelengths and functionalities have been continuously designed, their performance is heavily dependent on the use of conventional light sources, such as xenon lamps and lasers, which severely hinder further applications due to limited penetration depth and background autofluorescence in biological tissues. To mitigate these limitations and maximize the potential of AIEgens, unconventional excitation sources such as chemical energy, ultrasound, and X-ray offer effective alternatives that circumvent the drawbacks associated with traditional light-based constant excitation. In this Review, we introduce the fundamental principles governing the combination of unconventional excitation sources with AIEgens, highlight recent advancements in using AIEgens excited by these unconventional sources for bioimaging and theranostics, and discuss current challenges and future perspectives aimed at advancing the biomedical applications of AIEgens.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"3 6","pages":"341-351"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188483/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/cbmi.4c00108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/23 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aggregation-induced emission luminogens (AIEgens) have been prosperously developed and applied in the fields of optical imaging and theranostics since its establishment. Nowadays, AIEgens can fulfill nearly all requirements in optical imaging and theranostics with emission spectra ranging from visible to near-infrared wavelengths. Although a variety of AIEgens with varying wavelengths and functionalities have been continuously designed, their performance is heavily dependent on the use of conventional light sources, such as xenon lamps and lasers, which severely hinder further applications due to limited penetration depth and background autofluorescence in biological tissues. To mitigate these limitations and maximize the potential of AIEgens, unconventional excitation sources such as chemical energy, ultrasound, and X-ray offer effective alternatives that circumvent the drawbacks associated with traditional light-based constant excitation. In this Review, we introduce the fundamental principles governing the combination of unconventional excitation sources with AIEgens, highlight recent advancements in using AIEgens excited by these unconventional sources for bioimaging and theranostics, and discuss current challenges and future perspectives aimed at advancing the biomedical applications of AIEgens.
期刊介绍:
Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging