Long Yang, Mengmeng Li, Lifang Yang, Zhenlong Wang, Zhigang Shang
{"title":"Hippocampal LFP responses during pigeon homing flight in outdoors.","authors":"Long Yang, Mengmeng Li, Lifang Yang, Zhenlong Wang, Zhigang Shang","doi":"10.1523/JNEUROSCI.0185-25.2025","DOIUrl":null,"url":null,"abstract":"<p><p>The hippocampal formation (HF) plays a key role in avian spatial navigation. Previous studies suggest that the HF may serve different functions at various stages in pigeons' long-distance outdoor homing flight. However, it remains unclear whether the HF exhibits specific neural responses during these stages. In this study, we employed a wearable bimodal data recording system to simultaneously capture flight trajectories and hippocampal local field potential (LFP) signals of pigeons (either sex) during outdoor homing navigation. Our results revealed significant differences in hippocampal neural responses across the initial decision-making (DM) and en route navigation (ER) stages. Specifically, elevated LFP power in theta (4-12 Hz) and beta (12-30 Hz) bands was detected during the DM stage compared to the ER stage, while the high gamma (60-120 Hz) band exhibited the opposite pattern. In addition, we examined typical theta-beta phase-amplitude coupling (PAC) during the ER stage. Additionally, stage-specific hippocampal responses remained consistent across release sites. Notably, the difference in hippocampal responses across stages diminished along with the accumulation of homing experience. These results offer new insights into the role of the avian HF in homing flight navigation and suggest parallels between avian and mammalian hippocampal mechanisms in spatial learning.<b>Significance Statement</b> It remains unclear whether the hippocampal formation (HF) exhibits specific neural responses during various stages in the long-distance outdoor navigation of pigeons. By recording hippocampal local field potentials (LFPs) and positional data during natural outdoor flights, we reveal distinct neural response patterns that differentiate between initial decision-making and sustained navigation stages. We detected band-specific power and coupling responses between different navigation stages, consistent across multiple release sites. Additionally, we found that the LFP responses differences across stages gradually diminish along with the accumulation of the homing experience. Our study offers new insights into the role of the avian HF in outdoor homing flight.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.0185-25.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The hippocampal formation (HF) plays a key role in avian spatial navigation. Previous studies suggest that the HF may serve different functions at various stages in pigeons' long-distance outdoor homing flight. However, it remains unclear whether the HF exhibits specific neural responses during these stages. In this study, we employed a wearable bimodal data recording system to simultaneously capture flight trajectories and hippocampal local field potential (LFP) signals of pigeons (either sex) during outdoor homing navigation. Our results revealed significant differences in hippocampal neural responses across the initial decision-making (DM) and en route navigation (ER) stages. Specifically, elevated LFP power in theta (4-12 Hz) and beta (12-30 Hz) bands was detected during the DM stage compared to the ER stage, while the high gamma (60-120 Hz) band exhibited the opposite pattern. In addition, we examined typical theta-beta phase-amplitude coupling (PAC) during the ER stage. Additionally, stage-specific hippocampal responses remained consistent across release sites. Notably, the difference in hippocampal responses across stages diminished along with the accumulation of homing experience. These results offer new insights into the role of the avian HF in homing flight navigation and suggest parallels between avian and mammalian hippocampal mechanisms in spatial learning.Significance Statement It remains unclear whether the hippocampal formation (HF) exhibits specific neural responses during various stages in the long-distance outdoor navigation of pigeons. By recording hippocampal local field potentials (LFPs) and positional data during natural outdoor flights, we reveal distinct neural response patterns that differentiate between initial decision-making and sustained navigation stages. We detected band-specific power and coupling responses between different navigation stages, consistent across multiple release sites. Additionally, we found that the LFP responses differences across stages gradually diminish along with the accumulation of the homing experience. Our study offers new insights into the role of the avian HF in outdoor homing flight.
期刊介绍:
JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles