Guishan Ye, Siyu Xiong, Zhipeng Su, Guosheng Chen, Siyuan Liu, Zixuan Wang, Huanchun Chen, Anding Zhang
{"title":"Development of a Quadruplex RT-qPCR Assay for Rapid Detection and Differentiation of PRRSV-2 and Its Predominant Genetic Sublineages in China.","authors":"Guishan Ye, Siyu Xiong, Zhipeng Su, Guosheng Chen, Siyuan Liu, Zixuan Wang, Huanchun Chen, Anding Zhang","doi":"10.3390/v17060853","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Porcine Reproductive and Respiratory Syndrome (PRRS) is a highly contagious disease characterized by reproductive failure in sows and severe respiratory disorders across all swine ages, causing significant economic losses. In China, the PRRSV epidemiological landscape is complex, with the coexistence of multiple lineages and frequent recombination. The major circulating strains include sublineages 1.8 (NADC30-like PRRSV) and 1.5 (NADC34-like PRRSV), along with lineages 8 (HP-like PRRSV) and 5 (VR2332-like PRRSV), highlighting the urgent need for rapid detection and lineage differentiation.</p><p><strong>Methods: </strong>A quadruplex RT-qPCR assay was developed targeting lineage-specific deletions in the NSP2 gene to simultaneously detect PRRSV-2 and differentiate NADC30-like PRRSV, HP-like PRRSV, and NADC34-like PRRSV strains. The assay was optimized with respect to reaction conditions, including annealing temperature, primers, and probe concentrations. The method's performance was evaluated in terms of specificity, sensitivity, repeatability, stability, limit of detection (LOD), and consistency with sequencing results.</p><p><strong>Results: </strong>The assay demonstrated high sensitivity (LOD of 3 copies/μL), high specificity, and good repeatability (coefficient of variation < 1.5%). Field application using 938 samples from Guangxi A and B farms revealed NADC30-like PRRSV wild-type strains at positivity rates of 13.44% and 3.53%, respectively. Positive samples selected for sequencing were further confirmed using ORF5-based phylogenetic analysis and NSP2 deletion pattern comparison, which aligned with RT-qPCR detection results. Field application primarily detected NADC30-like PRRSV, while further validation is still needed for HP-like and NADC34-like strains. The developed quadruplex RT-qPCR assay enables rapid and simultaneous detection of PRRSV-2 and differentiation of three major lineages, providing a sensitive, specific, and reliable tool for distinguishing vaccine-derived from circulating strains and supporting targeted disease surveillance and control in swine farms.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"17 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12197470/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v17060853","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Porcine Reproductive and Respiratory Syndrome (PRRS) is a highly contagious disease characterized by reproductive failure in sows and severe respiratory disorders across all swine ages, causing significant economic losses. In China, the PRRSV epidemiological landscape is complex, with the coexistence of multiple lineages and frequent recombination. The major circulating strains include sublineages 1.8 (NADC30-like PRRSV) and 1.5 (NADC34-like PRRSV), along with lineages 8 (HP-like PRRSV) and 5 (VR2332-like PRRSV), highlighting the urgent need for rapid detection and lineage differentiation.
Methods: A quadruplex RT-qPCR assay was developed targeting lineage-specific deletions in the NSP2 gene to simultaneously detect PRRSV-2 and differentiate NADC30-like PRRSV, HP-like PRRSV, and NADC34-like PRRSV strains. The assay was optimized with respect to reaction conditions, including annealing temperature, primers, and probe concentrations. The method's performance was evaluated in terms of specificity, sensitivity, repeatability, stability, limit of detection (LOD), and consistency with sequencing results.
Results: The assay demonstrated high sensitivity (LOD of 3 copies/μL), high specificity, and good repeatability (coefficient of variation < 1.5%). Field application using 938 samples from Guangxi A and B farms revealed NADC30-like PRRSV wild-type strains at positivity rates of 13.44% and 3.53%, respectively. Positive samples selected for sequencing were further confirmed using ORF5-based phylogenetic analysis and NSP2 deletion pattern comparison, which aligned with RT-qPCR detection results. Field application primarily detected NADC30-like PRRSV, while further validation is still needed for HP-like and NADC34-like strains. The developed quadruplex RT-qPCR assay enables rapid and simultaneous detection of PRRSV-2 and differentiation of three major lineages, providing a sensitive, specific, and reliable tool for distinguishing vaccine-derived from circulating strains and supporting targeted disease surveillance and control in swine farms.
期刊介绍:
Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.