Two plasmid-borne virulence genomic islands of Clavibacter michiganensis are genetically diverse and determine the development of wilt symptoms in host plants.

IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences
New Phytologist Pub Date : 2025-06-27 DOI:10.1111/nph.70329
In Sun Hwang, Thuong Thi Nguyen, Eom-Ji Oh, Geonhui Cho, Jea Hyeoung Kim, Ki-Tae Kim, Yong-Hwan Lee, You-Kyoung Han, Chang-Sik Oh
{"title":"Two plasmid-borne virulence genomic islands of Clavibacter michiganensis are genetically diverse and determine the development of wilt symptoms in host plants.","authors":"In Sun Hwang, Thuong Thi Nguyen, Eom-Ji Oh, Geonhui Cho, Jea Hyeoung Kim, Ki-Tae Kim, Yong-Hwan Lee, You-Kyoung Han, Chang-Sik Oh","doi":"10.1111/nph.70329","DOIUrl":null,"url":null,"abstract":"<p><p>Plasmids contribute to the efficient adaptation of bacteria to specific niches in nature. The gram-positive bacterium Clavibacter michiganensis carries two plasmid-borne important virulence genes, celA and pat-1, necessary for wilting in tomato. The 88 C. michiganensis field isolates collected between 2011 and 2020 were examined for phenotypic variation, including virulence in host plants. Four isolates lacking plasmids with celA, pat-1, or both failed to cause wilting, and nine isolates, including these four, failed to cause wilting in Nicotiana benthamiana. Whole genome analyses revealed 11 distinct plasmid types, including 9 newly identified, and 10 bacterial groups with different plasmid compositions, despite having almost identical chromosomes. Comparative genomic analyses revealed significant genetic diversity among the plasmids, while three plasmids containing the genomic island (GI) α with celA or GIβ with pat-1 and three newly identified plasmids carrying both islands shared large blocks of synteny. In addition, GIα is closely associated with mobile genetic elements, suggesting the genetic rearrangement or transfer at this locus. These results suggest that C. michiganensis harbors a wide variety of virulence and nonvirulence plasmids, and that there is genetic rearrangement among plasmids in GI regions, determining bacterial virulence in plants.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.70329","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Plasmids contribute to the efficient adaptation of bacteria to specific niches in nature. The gram-positive bacterium Clavibacter michiganensis carries two plasmid-borne important virulence genes, celA and pat-1, necessary for wilting in tomato. The 88 C. michiganensis field isolates collected between 2011 and 2020 were examined for phenotypic variation, including virulence in host plants. Four isolates lacking plasmids with celA, pat-1, or both failed to cause wilting, and nine isolates, including these four, failed to cause wilting in Nicotiana benthamiana. Whole genome analyses revealed 11 distinct plasmid types, including 9 newly identified, and 10 bacterial groups with different plasmid compositions, despite having almost identical chromosomes. Comparative genomic analyses revealed significant genetic diversity among the plasmids, while three plasmids containing the genomic island (GI) α with celA or GIβ with pat-1 and three newly identified plasmids carrying both islands shared large blocks of synteny. In addition, GIα is closely associated with mobile genetic elements, suggesting the genetic rearrangement or transfer at this locus. These results suggest that C. michiganensis harbors a wide variety of virulence and nonvirulence plasmids, and that there is genetic rearrangement among plasmids in GI regions, determining bacterial virulence in plants.

两个质粒携带的密歇根克拉维杆菌毒力基因组岛具有遗传多样性,并决定了宿主植物枯萎症状的发展。
质粒有助于细菌对自然界特定生态位的有效适应。革兰氏阳性细菌密歇根Clavibacter michiganensis携带两个质粒携带的重要毒力基因celA和pat1,这是番茄萎蔫所必需的。研究了2011 ~ 2020年收集的88株大田分离株的表型变异,包括对寄主植物的毒力。4个缺失celA、pat-1质粒或两者都缺失的分离株未能引起萎蔫,包括这4个在内的9个分离株未能引起本烟叶萎蔫。全基因组分析揭示了11种不同的质粒类型,包括9种新发现的质粒类型,以及10种具有不同质粒组成的细菌群,尽管它们具有几乎相同的染色体。基因组比较分析显示,3个含有基因组岛(GI) α (celA)或GIβ (pat-1)的质粒和3个新发现的同时携带基因组岛(GI) α和pat-1的质粒具有较大的同源性。此外,GIα与移动遗传元件密切相关,表明该位点存在遗传重排或转移。这些结果表明,密歇根芽孢杆菌具有多种毒力质粒和非毒力质粒,并且在胃肠道区域质粒之间存在遗传重排,决定了细菌在植物中的毒力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Phytologist
New Phytologist PLANT SCIENCES-
CiteScore
17.60
自引率
5.30%
发文量
728
审稿时长
1 months
期刊介绍: New Phytologist is a leading publication that showcases exceptional and groundbreaking research in plant science and its practical applications. With a focus on five distinct sections - Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology - the journal covers a wide array of topics ranging from cellular processes to the impact of global environmental changes. We encourage the use of interdisciplinary approaches, and our content is structured to reflect this. Our journal acknowledges the diverse techniques employed in plant science, including molecular and cell biology, functional genomics, modeling, and system-based approaches, across various subfields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信