{"title":"VITT Pathophysiology: An Update.","authors":"Eleonora Petito, Paolo Gresele","doi":"10.3390/vaccines13060650","DOIUrl":null,"url":null,"abstract":"<p><p>Vaccine-induced thrombotic thrombocytopenia (VITT) is a rare thrombotic disorder first identified in 2021 as a catastrophic syndrome associated with anti-SARS-CoV-2 adenoviral vector (AdV)-vaccine administration. It is characterized by the presence of oligo- or monoclonal anti-PF4 antibodies able to induce in vitro platelet activation in the presence of PF4. In addition to this immune-based pathomechanism, random splicing events of the Adv-vector DNA encoding for SARS-CoV-2 spike protein resulting in the secretion of soluble spike variants have been postulated as a possible pathophysiological mechanism. More recently, some novel clinical-pathological anti-PF4-associated entities also characterized by thrombosis, thrombocytopenia, and VITT-like antibodies but independent from heparin or AdV-vaccine administration have been identified. To date, these VITT-like disorders have been reported following the administration of vaccines different from anti-SARS-CoV-2 AdV-vaccines, like human papillomavirus (HPV) and mRNA-based COVID-19 vaccines, following a bacterial or viral respiratory infection, and in patients with a monoclonal gammopathy of undetermined significance. The purpose of this review is to provide an update on the knowledge on VITT pathogenesis, focusing on recent findings on anti-PF4 antibodies, on a possible genetic predisposition to VITT, on VITT-antibody intracellular activated pathways, on lipid metabolism alterations, and on new VITT-like disorders.</p>","PeriodicalId":23634,"journal":{"name":"Vaccines","volume":"13 6","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12197362/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/vaccines13060650","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Vaccine-induced thrombotic thrombocytopenia (VITT) is a rare thrombotic disorder first identified in 2021 as a catastrophic syndrome associated with anti-SARS-CoV-2 adenoviral vector (AdV)-vaccine administration. It is characterized by the presence of oligo- or monoclonal anti-PF4 antibodies able to induce in vitro platelet activation in the presence of PF4. In addition to this immune-based pathomechanism, random splicing events of the Adv-vector DNA encoding for SARS-CoV-2 spike protein resulting in the secretion of soluble spike variants have been postulated as a possible pathophysiological mechanism. More recently, some novel clinical-pathological anti-PF4-associated entities also characterized by thrombosis, thrombocytopenia, and VITT-like antibodies but independent from heparin or AdV-vaccine administration have been identified. To date, these VITT-like disorders have been reported following the administration of vaccines different from anti-SARS-CoV-2 AdV-vaccines, like human papillomavirus (HPV) and mRNA-based COVID-19 vaccines, following a bacterial or viral respiratory infection, and in patients with a monoclonal gammopathy of undetermined significance. The purpose of this review is to provide an update on the knowledge on VITT pathogenesis, focusing on recent findings on anti-PF4 antibodies, on a possible genetic predisposition to VITT, on VITT-antibody intracellular activated pathways, on lipid metabolism alterations, and on new VITT-like disorders.
VaccinesPharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
8.90
自引率
16.70%
发文量
1853
审稿时长
18.06 days
期刊介绍:
Vaccines (ISSN 2076-393X) is an international, peer-reviewed open access journal focused on laboratory and clinical vaccine research, utilization and immunization. Vaccines publishes high quality reviews, regular research papers, communications and case reports.