Research Progress and Prospects of Intelligent Measurement and Control Technology for Tillage Depth in Subsoiling Operations.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-06-19 DOI:10.3390/s25123821
Yue Deng, Wenyi Zhang, Bing Qi, Yunxia Wang, Youqiang Ding, Haojie Zhang
{"title":"Research Progress and Prospects of Intelligent Measurement and Control Technology for Tillage Depth in Subsoiling Operations.","authors":"Yue Deng, Wenyi Zhang, Bing Qi, Yunxia Wang, Youqiang Ding, Haojie Zhang","doi":"10.3390/s25123821","DOIUrl":null,"url":null,"abstract":"<p><p>Deep tillage is a conservation tillage method that aims to break the plow pan layer. It provides significant benefits, including enhanced root development, improved soil quality, and substantial increases in crop yields. The depth of tillage is a crucial factor in assessing the effectiveness of deep tillage operations. Accurate regulation of tillage depth in deep tillage equipment is vital for ensuring the high-quality and efficient execution of these practices. The distribution of mechanical resistance within the soil can effectively indicate the location of the plow pan layer and serves as the main reference for setting the tillage depth for machinery. This paper examined the current state of research on tillage depth control technology for deep tillage operations. It focused on three main technical areas: soil mechanical resistance detection, tillage depth measurement, and tillage depth regulation. The report discussed the working principles of various technologies and compared the existing methods. Additionally, the paper analyzed the challenges faced in the development of tillage depth control technology in China and offers recommendations for future advancements. It highlighted that leveraging information and digital technologies to determine the distribution of the soil plow pan layer, along with the integration of efficient and intelligent control technologies for precise tillage depth regulation, represented a key direction for the future development of deep tillage operations.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25123821","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Deep tillage is a conservation tillage method that aims to break the plow pan layer. It provides significant benefits, including enhanced root development, improved soil quality, and substantial increases in crop yields. The depth of tillage is a crucial factor in assessing the effectiveness of deep tillage operations. Accurate regulation of tillage depth in deep tillage equipment is vital for ensuring the high-quality and efficient execution of these practices. The distribution of mechanical resistance within the soil can effectively indicate the location of the plow pan layer and serves as the main reference for setting the tillage depth for machinery. This paper examined the current state of research on tillage depth control technology for deep tillage operations. It focused on three main technical areas: soil mechanical resistance detection, tillage depth measurement, and tillage depth regulation. The report discussed the working principles of various technologies and compared the existing methods. Additionally, the paper analyzed the challenges faced in the development of tillage depth control technology in China and offers recommendations for future advancements. It highlighted that leveraging information and digital technologies to determine the distribution of the soil plow pan layer, along with the integration of efficient and intelligent control technologies for precise tillage depth regulation, represented a key direction for the future development of deep tillage operations.

深埋耕作深度智能测控技术研究进展与展望。
深耕是一种保护性耕作方法,旨在打破犁盘层。它提供了显著的好处,包括促进根系发育、改善土壤质量和大幅提高作物产量。深耕深度是评价深耕作业效果的关键因素。准确调节深耕设备的耕作深度对于确保这些做法的高质量和高效执行至关重要。土壤内部的机械阻力分布可以有效地指示犁盘层的位置,是设置机械耕作深度的主要依据。本文综述了深耕作业中耕深控制技术的研究现状。它集中在三个主要技术领域:土壤机械阻力检测、耕作深度测量和耕作深度调节。该报告讨论了各种技术的工作原理,并对现有方法进行了比较。此外,本文还分析了中国耕深控制技术发展面临的挑战,并对未来的发展提出了建议。报告强调,利用信息和数字技术确定土壤犁盘层分布,结合高效智能控制技术实现精准耕深调节,是未来深耕作业发展的关键方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信