{"title":"AI driven prediction of early age compressive strength in ultra high performance fiber reinforced concrete.","authors":"Mohamed Abdellatief, Wafa Hamla, Hassan Hamouda","doi":"10.1038/s41598-025-06725-z","DOIUrl":null,"url":null,"abstract":"<p><p>Ultra-high-performance fiber-reinforced concrete (UHPFRC) is an exceptional type of cementitious composite with superior mechanical and durability performances. Achieving these properties involves maintaining a low water-to-cement ratio, optimizing aggregate size distribution, and integrating fiber reinforcement. Recently, there has been a notable trend in the development and application of UHPFRCs. However, there is still a requirement for artificial intelligence (AI) methods to predict the early-age compressive strength (CS) of UHPFRC and to define the key input factors for optimal mix design with appropriate proportions. Therefore, five AI models were chosen to assess the predictive accuracy of early-age CS in the current study. These models include support vector regression (SVR), random forest (RF), artificial neural network (ANN), gradient boosting (GB), and Gaussian Process Regression (GPR). As part of evaluating model performance and conducting error analysis, this study investigated differences in prediction accuracy among five models across training and testing datasets. Additionally, feature importance analysis was implemented to explore the influence of the input variables on the early-age CS. Results indicate that GPR and SVR models with high predictive accuracy (R<sup>2</sup> > 0.90) outperformed ANN, RF, and GB models. Water, superplasticizer, curing temperature, and fiber content emerged as the most significant controlling parameters affecting early-age CS. The analysis of the interaction among the significant input variables and early-age CS suggests recommended inclusion levels for optimal performance. Specifically, it is recommended that the water content be maintained between 145 and 155 kg/m<sup>2</sup>, the superplasticizer content between 30 and 40 kg/m<sup>2</sup>, and the fiber content exceed 200 kg/m<sup>2</sup>. These recommendations are aimed at achieving desirable early-age CS characteristics. The overall findings reveal that the AI models can effectively improve the monitoring of early-age CS of UHPFRC.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"20316"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12202810/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-06725-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ultra-high-performance fiber-reinforced concrete (UHPFRC) is an exceptional type of cementitious composite with superior mechanical and durability performances. Achieving these properties involves maintaining a low water-to-cement ratio, optimizing aggregate size distribution, and integrating fiber reinforcement. Recently, there has been a notable trend in the development and application of UHPFRCs. However, there is still a requirement for artificial intelligence (AI) methods to predict the early-age compressive strength (CS) of UHPFRC and to define the key input factors for optimal mix design with appropriate proportions. Therefore, five AI models were chosen to assess the predictive accuracy of early-age CS in the current study. These models include support vector regression (SVR), random forest (RF), artificial neural network (ANN), gradient boosting (GB), and Gaussian Process Regression (GPR). As part of evaluating model performance and conducting error analysis, this study investigated differences in prediction accuracy among five models across training and testing datasets. Additionally, feature importance analysis was implemented to explore the influence of the input variables on the early-age CS. Results indicate that GPR and SVR models with high predictive accuracy (R2 > 0.90) outperformed ANN, RF, and GB models. Water, superplasticizer, curing temperature, and fiber content emerged as the most significant controlling parameters affecting early-age CS. The analysis of the interaction among the significant input variables and early-age CS suggests recommended inclusion levels for optimal performance. Specifically, it is recommended that the water content be maintained between 145 and 155 kg/m2, the superplasticizer content between 30 and 40 kg/m2, and the fiber content exceed 200 kg/m2. These recommendations are aimed at achieving desirable early-age CS characteristics. The overall findings reveal that the AI models can effectively improve the monitoring of early-age CS of UHPFRC.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.