Jin Wang, Yan Wang, Junhui Yu, Qingping Li, Hailin Wang, Xinzhi Zhou
{"title":"Research on Bearing Fault Diagnosis Method for Varying Operating Conditions Based on Spatiotemporal Feature Fusion.","authors":"Jin Wang, Yan Wang, Junhui Yu, Qingping Li, Hailin Wang, Xinzhi Zhou","doi":"10.3390/s25123789","DOIUrl":null,"url":null,"abstract":"<p><p>In real-world scenarios, the rotational speed of bearings is variable. Due to changes in operating conditions, the feature distribution of bearing vibration data becomes inconsistent, which leads to the inability to directly apply the training model built under one operating condition (source domain) to another condition (target domain). Furthermore, the lack of sufficient labeled data in the target domain further complicates fault diagnosis under varying operating conditions. To address this issue, this paper proposes a spatiotemporal feature fusion domain-adaptive network (STFDAN) framework for bearing fault diagnosis under varying operating conditions. The framework constructs a feature extraction and domain adaptation network based on a parallel architecture, designed to capture the complex dynamic characteristics of vibration signals. First, the Fast Fourier Transform (FFT) and Variational Mode Decomposition (VMD) are used to extract the spectral and modal features of the signals, generating a joint representation with multi-level information. Then, a parallel processing mechanism of the Convolutional Neural Network (SECNN) based on the Squeeze-and-Excitation module and the Bidirectional Long Short-Term Memory network (BiLSTM) is employed to dynamically adjust weights, capturing high-dimensional spatiotemporal features. The cross-attention mechanism enables the interaction and fusion of spatial and temporal features, significantly enhancing the complementarity and coupling of the feature representations. Finally, a Multi-Kernel Maximum Mean Discrepancy (MKMMD) is introduced to align the feature distributions between the source and target domains, enabling efficient fault diagnosis under varying bearing conditions. The proposed STFDAN framework is evaluated using bearing datasets from Case Western Reserve University (CWRU), Jiangnan University (JNU), and Southeast University (SEU). Experimental results demonstrate that STFDAN achieves high diagnostic accuracy across different load conditions and effectively solves the bearing fault diagnosis problem under varying operating conditions.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25123789","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In real-world scenarios, the rotational speed of bearings is variable. Due to changes in operating conditions, the feature distribution of bearing vibration data becomes inconsistent, which leads to the inability to directly apply the training model built under one operating condition (source domain) to another condition (target domain). Furthermore, the lack of sufficient labeled data in the target domain further complicates fault diagnosis under varying operating conditions. To address this issue, this paper proposes a spatiotemporal feature fusion domain-adaptive network (STFDAN) framework for bearing fault diagnosis under varying operating conditions. The framework constructs a feature extraction and domain adaptation network based on a parallel architecture, designed to capture the complex dynamic characteristics of vibration signals. First, the Fast Fourier Transform (FFT) and Variational Mode Decomposition (VMD) are used to extract the spectral and modal features of the signals, generating a joint representation with multi-level information. Then, a parallel processing mechanism of the Convolutional Neural Network (SECNN) based on the Squeeze-and-Excitation module and the Bidirectional Long Short-Term Memory network (BiLSTM) is employed to dynamically adjust weights, capturing high-dimensional spatiotemporal features. The cross-attention mechanism enables the interaction and fusion of spatial and temporal features, significantly enhancing the complementarity and coupling of the feature representations. Finally, a Multi-Kernel Maximum Mean Discrepancy (MKMMD) is introduced to align the feature distributions between the source and target domains, enabling efficient fault diagnosis under varying bearing conditions. The proposed STFDAN framework is evaluated using bearing datasets from Case Western Reserve University (CWRU), Jiangnan University (JNU), and Southeast University (SEU). Experimental results demonstrate that STFDAN achieves high diagnostic accuracy across different load conditions and effectively solves the bearing fault diagnosis problem under varying operating conditions.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.