Research on a Visually Assisted Efficient Blind-Guiding System and an Autonomous Shopping Guidance Robot Arm Adapted to the Complex Environment of Farmers' Markets.
Mei Liu, Yunhua Chen, Jinjun Rao, Wojciech Giernacki, Zhiming Wang, Jinbo Chen
{"title":"Research on a Visually Assisted Efficient Blind-Guiding System and an Autonomous Shopping Guidance Robot Arm Adapted to the Complex Environment of Farmers' Markets.","authors":"Mei Liu, Yunhua Chen, Jinjun Rao, Wojciech Giernacki, Zhiming Wang, Jinbo Chen","doi":"10.3390/s25123785","DOIUrl":null,"url":null,"abstract":"<p><p>It is great challenge for visually impaired (VI) people to shop in narrow and crowded farmers' markets. However, there is no research related to guiding them in farmers' markets worldwide. This paper proposes the Radio-Frequency-Visual Tag Positioning and Automatic Detection (RFTPAD) algorithm to quickly build a high-precision navigation map. It combines the advantages of visual beacons and radio-frequency signal beacons to accurately calculate the guide robot's coordinates to correct its positioning error and simultaneously perform the task of mapping and detecting information. Furthermore, this paper proposes the A*-Fixed-Route Navigation (A*-FRN) algorithm, which controls the robot to navigate along fixed routes and prevents it from making frequent detours in crowded aisles. Finally, this study equips the guide robot with a flexible robotic arm and proposes the Intelligent-Robotic-Arm-Guided Shopping (IRAGS) algorithm to guide VI people to quickly select fresh products or guide merchants to pack and weigh products. Multiple experiments conducted in a 1600 m<sup>2</sup> market demonstrate that compared with the classic mapping method, the accuracy of RFTPAD is improved by 23.9%. What is more, compared with the general navigation method, the driving trajectory length of A*-FRN is 23.3% less. Furthermore, the efficiency of guiding VI people to select products by a robotic arm is 100% higher than that through a finger to search and touch.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25123785","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
It is great challenge for visually impaired (VI) people to shop in narrow and crowded farmers' markets. However, there is no research related to guiding them in farmers' markets worldwide. This paper proposes the Radio-Frequency-Visual Tag Positioning and Automatic Detection (RFTPAD) algorithm to quickly build a high-precision navigation map. It combines the advantages of visual beacons and radio-frequency signal beacons to accurately calculate the guide robot's coordinates to correct its positioning error and simultaneously perform the task of mapping and detecting information. Furthermore, this paper proposes the A*-Fixed-Route Navigation (A*-FRN) algorithm, which controls the robot to navigate along fixed routes and prevents it from making frequent detours in crowded aisles. Finally, this study equips the guide robot with a flexible robotic arm and proposes the Intelligent-Robotic-Arm-Guided Shopping (IRAGS) algorithm to guide VI people to quickly select fresh products or guide merchants to pack and weigh products. Multiple experiments conducted in a 1600 m2 market demonstrate that compared with the classic mapping method, the accuracy of RFTPAD is improved by 23.9%. What is more, compared with the general navigation method, the driving trajectory length of A*-FRN is 23.3% less. Furthermore, the efficiency of guiding VI people to select products by a robotic arm is 100% higher than that through a finger to search and touch.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.