{"title":"LGFUNet: A Water Extraction Network in SAR Images Based on Multiscale Local Features with Global Information.","authors":"Xiaowei Bai, Yonghong Zhang, Jujie Wei","doi":"10.3390/s25123814","DOIUrl":null,"url":null,"abstract":"<p><p>To address existing issues in water extraction from SAR images based on deep learning, such as confusion between mountain shadows and water bodies and difficulty in extracting complex boundary details for continuous water bodies, the LGFUNet model is proposed. The LGFUNet model consists of three parts: the encoder-decoder, the DECASPP module, and the LGFF module. In the encoder-decoder, the Swin-Transformer module is used instead of convolution kernels for feature extraction, enhancing the learning of global information and improving the model's ability to capture the spatial features of continuous water bodies. The DECASPP module is employed to extract and select multiscale features, focusing on complex water body boundary details. Additionally, a series of LGFF modules are inserted between the encoder and decoder to reduce the semantic gap between the encoder and decoder feature maps and the spatial information loss caused by the encoder's downsampling process, improving the model's ability to learn detailed information. Sentinel-1 SAR data from the Qinghai-Tibet Plateau region are selected, and the water extraction performance of the proposed LGFUNet model is compared with that of existing methods such as U-Net, Swin-UNet, and SCUNet++. The results show that the LGFUNet model achieves the best performance, respectively.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25123814","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To address existing issues in water extraction from SAR images based on deep learning, such as confusion between mountain shadows and water bodies and difficulty in extracting complex boundary details for continuous water bodies, the LGFUNet model is proposed. The LGFUNet model consists of three parts: the encoder-decoder, the DECASPP module, and the LGFF module. In the encoder-decoder, the Swin-Transformer module is used instead of convolution kernels for feature extraction, enhancing the learning of global information and improving the model's ability to capture the spatial features of continuous water bodies. The DECASPP module is employed to extract and select multiscale features, focusing on complex water body boundary details. Additionally, a series of LGFF modules are inserted between the encoder and decoder to reduce the semantic gap between the encoder and decoder feature maps and the spatial information loss caused by the encoder's downsampling process, improving the model's ability to learn detailed information. Sentinel-1 SAR data from the Qinghai-Tibet Plateau region are selected, and the water extraction performance of the proposed LGFUNet model is compared with that of existing methods such as U-Net, Swin-UNet, and SCUNet++. The results show that the LGFUNet model achieves the best performance, respectively.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.