{"title":"Multi-Party Verifiably Collaborative Encryption for Biomedical Signals via Singular Spectrum Analysis-Based Chaotic Filter Bank Networks.","authors":"Xiwen Zhang, Jianfeng He, Bingo Wing-Kuen Ling","doi":"10.3390/s25123823","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a multi-party verifiably collaborative system for encrypting the nonlinear and the non-stationary biomedical signals captured by biomedical sensors via the singular spectrum analysis (SSA)-based chaotic networks. In particular, the raw signals are first decomposed into the multiple components by the SSA. Then, these decomposed components are fed into the chaotic filter bank networks for performing the encryption. To perform the multi-party verifiably collaborative encryption, the window length of the SSA and the total number of the layers in the chaotic network are flexibly designed to match the total number of the collaborators. The computer numerical simulation results show that our proposed system achieves a good encryption performance.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25123823","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a multi-party verifiably collaborative system for encrypting the nonlinear and the non-stationary biomedical signals captured by biomedical sensors via the singular spectrum analysis (SSA)-based chaotic networks. In particular, the raw signals are first decomposed into the multiple components by the SSA. Then, these decomposed components are fed into the chaotic filter bank networks for performing the encryption. To perform the multi-party verifiably collaborative encryption, the window length of the SSA and the total number of the layers in the chaotic network are flexibly designed to match the total number of the collaborators. The computer numerical simulation results show that our proposed system achieves a good encryption performance.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.