Gait Recognition via Enhanced Visual-Audio Ensemble Learning with Decision Support Methods.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-06-18 DOI:10.3390/s25123794
Ruixiang Kan, Mei Wang, Tian Luo, Hongbing Qiu
{"title":"Gait Recognition via Enhanced Visual-Audio Ensemble Learning with Decision Support Methods.","authors":"Ruixiang Kan, Mei Wang, Tian Luo, Hongbing Qiu","doi":"10.3390/s25123794","DOIUrl":null,"url":null,"abstract":"<p><p>Gait is considered a valuable biometric feature, and it is essential for uncovering the latent information embedded within gait patterns. Gait recognition methods are expected to serve as significant components in numerous applications. However, existing gait recognition methods exhibit limitations in complex scenarios. To address these, we construct a dual-Kinect V2 system that focuses more on gait skeleton joint data and related acoustic signals. This setup lays a solid foundation for subsequent methods and updating strategies. The core framework consists of enhanced ensemble learning methods and Dempster-Shafer Evidence Theory (D-SET). Our recognition methods serve as the foundation, and the decision support mechanism is used to evaluate the compatibility of various modules within our system. On this basis, our main contributions are as follows: (1) an improved gait skeleton joint AdaBoost recognition method based on Circle Chaotic Mapping and Gramian Angular Field (GAF) representations; (2) a data-adaptive gait-related acoustic signal AdaBoost recognition method based on GAF and a Parallel Convolutional Neural Network (PCNN); and (3) an amalgamation of the Triangulation Topology Aggregation Optimizer (TTAO) and D-SET, providing a robust and innovative decision support mechanism. These collaborations improve the overall recognition accuracy and demonstrate their considerable application values.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25123794","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Gait is considered a valuable biometric feature, and it is essential for uncovering the latent information embedded within gait patterns. Gait recognition methods are expected to serve as significant components in numerous applications. However, existing gait recognition methods exhibit limitations in complex scenarios. To address these, we construct a dual-Kinect V2 system that focuses more on gait skeleton joint data and related acoustic signals. This setup lays a solid foundation for subsequent methods and updating strategies. The core framework consists of enhanced ensemble learning methods and Dempster-Shafer Evidence Theory (D-SET). Our recognition methods serve as the foundation, and the decision support mechanism is used to evaluate the compatibility of various modules within our system. On this basis, our main contributions are as follows: (1) an improved gait skeleton joint AdaBoost recognition method based on Circle Chaotic Mapping and Gramian Angular Field (GAF) representations; (2) a data-adaptive gait-related acoustic signal AdaBoost recognition method based on GAF and a Parallel Convolutional Neural Network (PCNN); and (3) an amalgamation of the Triangulation Topology Aggregation Optimizer (TTAO) and D-SET, providing a robust and innovative decision support mechanism. These collaborations improve the overall recognition accuracy and demonstrate their considerable application values.

基于决策支持方法的增强视听集成学习步态识别。
步态被认为是一种有价值的生物特征,对于揭示步态模式中的潜在信息至关重要。步态识别方法有望在许多应用中发挥重要作用。然而,现有的步态识别方法在复杂场景中存在局限性。为了解决这些问题,我们构建了一个双kinect V2系统,该系统更多地关注步态骨骼关节数据和相关的声学信号。这种设置为后续方法和更新策略奠定了坚实的基础。核心框架包括增强的集成学习方法和Dempster-Shafer证据理论(D-SET)。我们的识别方法作为基础,并使用决策支持机制来评估系统内各个模块的兼容性。在此基础上,我们的主要贡献有:(1)一种改进的基于圆混沌映射和格拉曼角场(GAF)表示的步态骨骼关节AdaBoost识别方法;(2)基于GAF和并行卷积神经网络(PCNN)的数据自适应步态相关声信号AdaBoost识别方法;(3)三角拓扑聚合优化器(TTAO)和D-SET的融合,提供了一种鲁棒的创新决策支持机制。这些协作提高了整体识别的准确性,显示了它们相当大的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信