{"title":"Feature Extraction for Low-Speed Bearing Fault Diagnosis Based on Spectral Amplitude Modulation and Wavelet Threshold Denoising.","authors":"Xiaojia Zu, Wenhao Sun, Yuncheng Guo, Yukai Zhao, Haihong Tang, Xue Jiang, Peng Chen","doi":"10.3390/s25123782","DOIUrl":null,"url":null,"abstract":"<p><p>To address the issue of difficult extraction of bearing fault features caused by weak fault features and strong environmental noise in low-speed, a low-speed bearing fault diagnosis method based on wavelet threshold denoising and spectral amplitude modulation is proposed. The proposed method effectively overcomes the limitation that the traditional spectral amplitude modulation is greatly affected by noise in low-speed. Firstly, the raw signal is subjected to wavelet threshold denoising to reduce the interference of strong background noise, thereby obtaining the denoised signal. Secondly, the denoised signal is subjected to spectral amplitude modulation to enhance the bearing fault impulses. Finally, the envelope spectrum is normalized to facilitate the visual display of fault feature frequencies. The proposed method is analyzed through simulated and experimental signals in low-speed. The experimental results indicate that the proposed method can reduce noise interference and effectively extract fault features in low-speed.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25123782","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To address the issue of difficult extraction of bearing fault features caused by weak fault features and strong environmental noise in low-speed, a low-speed bearing fault diagnosis method based on wavelet threshold denoising and spectral amplitude modulation is proposed. The proposed method effectively overcomes the limitation that the traditional spectral amplitude modulation is greatly affected by noise in low-speed. Firstly, the raw signal is subjected to wavelet threshold denoising to reduce the interference of strong background noise, thereby obtaining the denoised signal. Secondly, the denoised signal is subjected to spectral amplitude modulation to enhance the bearing fault impulses. Finally, the envelope spectrum is normalized to facilitate the visual display of fault feature frequencies. The proposed method is analyzed through simulated and experimental signals in low-speed. The experimental results indicate that the proposed method can reduce noise interference and effectively extract fault features in low-speed.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.