Effective Denoising of Multi-Source Partial Discharge Signals via an Improved Power Spectrum Segmentation Method Based on Normalized Spectral Kurtosis.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-06-18 DOI:10.3390/s25123798
Baojia Chen, Kaiwen Li, Yipeng Guo
{"title":"Effective Denoising of Multi-Source Partial Discharge Signals via an Improved Power Spectrum Segmentation Method Based on Normalized Spectral Kurtosis.","authors":"Baojia Chen, Kaiwen Li, Yipeng Guo","doi":"10.3390/s25123798","DOIUrl":null,"url":null,"abstract":"<p><p>In the field of partial discharge (PD) analysis, traditional methods typically employ single-source PD signal-processing techniques. However, these approaches exhibit significant limitations when applied to transformers with relatively complex structures. To overcome these limitations and achieve precise characterization of composite PD signatures, this study proposes an improved power spectrum segmentation method (IPSK) based on spectral kurtosis. Firstly, normalized power spectral kurtosis is used to select the appropriate parameters. Then, through the improved power spectrum segmentation method, the segmentation frequency band with the least noise is obtained. Finally, the instantaneous signal components with physical significance are obtained by reconstructing each frequency band through inverse fast Fourier transform. By analyzing the simulated signals and measured data of partial discharge, the proposed method is compared with EWT, AEFD, VMD, and CEEMDAN. The results show that IPSK has a good suppression effect on noise interference.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25123798","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of partial discharge (PD) analysis, traditional methods typically employ single-source PD signal-processing techniques. However, these approaches exhibit significant limitations when applied to transformers with relatively complex structures. To overcome these limitations and achieve precise characterization of composite PD signatures, this study proposes an improved power spectrum segmentation method (IPSK) based on spectral kurtosis. Firstly, normalized power spectral kurtosis is used to select the appropriate parameters. Then, through the improved power spectrum segmentation method, the segmentation frequency band with the least noise is obtained. Finally, the instantaneous signal components with physical significance are obtained by reconstructing each frequency band through inverse fast Fourier transform. By analyzing the simulated signals and measured data of partial discharge, the proposed method is compared with EWT, AEFD, VMD, and CEEMDAN. The results show that IPSK has a good suppression effect on noise interference.

基于归一化谱峰度的改进功率谱分割方法对多源局部放电信号的有效降噪。
在局部放电分析领域,传统方法通常采用单源局部放电信号处理技术。然而,当应用于结构相对复杂的变压器时,这些方法表现出明显的局限性。为了克服这些限制并实现复合PD特征的精确表征,本研究提出了一种改进的基于谱峰度的功率谱分割方法(IPSK)。首先,利用归一化功率谱峰度选择合适的参数;然后,通过改进的功率谱分割方法,得到噪声最小的分割频带。最后,通过快速傅里叶反变换对各频段进行重构,得到具有物理意义的瞬时信号分量。通过对局部放电模拟信号和实测数据的分析,将该方法与EWT、AEFD、VMD和CEEMDAN进行了比较。结果表明,IPSK对噪声干扰具有良好的抑制效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信