Effective Denoising of Multi-Source Partial Discharge Signals via an Improved Power Spectrum Segmentation Method Based on Normalized Spectral Kurtosis.
{"title":"Effective Denoising of Multi-Source Partial Discharge Signals via an Improved Power Spectrum Segmentation Method Based on Normalized Spectral Kurtosis.","authors":"Baojia Chen, Kaiwen Li, Yipeng Guo","doi":"10.3390/s25123798","DOIUrl":null,"url":null,"abstract":"<p><p>In the field of partial discharge (PD) analysis, traditional methods typically employ single-source PD signal-processing techniques. However, these approaches exhibit significant limitations when applied to transformers with relatively complex structures. To overcome these limitations and achieve precise characterization of composite PD signatures, this study proposes an improved power spectrum segmentation method (IPSK) based on spectral kurtosis. Firstly, normalized power spectral kurtosis is used to select the appropriate parameters. Then, through the improved power spectrum segmentation method, the segmentation frequency band with the least noise is obtained. Finally, the instantaneous signal components with physical significance are obtained by reconstructing each frequency band through inverse fast Fourier transform. By analyzing the simulated signals and measured data of partial discharge, the proposed method is compared with EWT, AEFD, VMD, and CEEMDAN. The results show that IPSK has a good suppression effect on noise interference.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25123798","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the field of partial discharge (PD) analysis, traditional methods typically employ single-source PD signal-processing techniques. However, these approaches exhibit significant limitations when applied to transformers with relatively complex structures. To overcome these limitations and achieve precise characterization of composite PD signatures, this study proposes an improved power spectrum segmentation method (IPSK) based on spectral kurtosis. Firstly, normalized power spectral kurtosis is used to select the appropriate parameters. Then, through the improved power spectrum segmentation method, the segmentation frequency band with the least noise is obtained. Finally, the instantaneous signal components with physical significance are obtained by reconstructing each frequency band through inverse fast Fourier transform. By analyzing the simulated signals and measured data of partial discharge, the proposed method is compared with EWT, AEFD, VMD, and CEEMDAN. The results show that IPSK has a good suppression effect on noise interference.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.