{"title":"A Multi-Feature Fusion Approach for Road Surface Recognition Leveraging Millimeter-Wave Radar.","authors":"Zhimin Qiu, Jinju Shao, Dong Guo, Xuehao Yin, Zhipeng Zhai, Zhibing Duan, Yi Xu","doi":"10.3390/s25123802","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid progress of intelligent vehicle technology, the accurate recognition of road surface types and conditions has emerged as a crucial technology for improving the safety and comfort levels in autonomous driving. This paper puts forward a multi-feature fusion approach for road surface identification. Relying on a 24 GHz millimeter-wave radar, statistical features are combined with wavelet transform techniques. This combination enables the efficient classification of diverse road surface types and conditions. Firstly, the discriminability of radar echo signals corresponding to different road surface types is verified via statistical analysis. During this process, six-dimensional statistical features that display remarkable differences are extracted. Subsequently, a novel radar data reconstruction approach is presented. This method involves fitting discrete echo signals into coordinate curves. Then, discrete wavelet transform is utilized to extract both low-frequency and high-frequency features, thereby strengthening the spatio-temporal correlation of the signals. The low-frequency information serves to capture general characteristics, whereas the high-frequency information reflects detailed features. The statistical features and wavelet transform features are fused at the feature level, culminating in the formation of a 56-dimensional feature vector. Four machine learning models, namely the Wide Neural Network (WNN), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Kernel methods, are employed as classifiers for both training and testing purposes. Experiments were executed with 8865 samples obtained from a real-vehicle platform. These samples comprehensively represented 12 typical road surface types and conditions. The experimental outcomes clearly indicate that the proposed method is capable of attaining a road surface type identification accuracy as high as 94.2%. As a result, it furnishes an efficient and cost-efficient road perception solution for intelligent driving systems. This research validates the potential application of millimeter-wave radar in intricate road environments and offers both theoretical underpinning and practical support for the advancement of autonomous driving technology.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25123802","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid progress of intelligent vehicle technology, the accurate recognition of road surface types and conditions has emerged as a crucial technology for improving the safety and comfort levels in autonomous driving. This paper puts forward a multi-feature fusion approach for road surface identification. Relying on a 24 GHz millimeter-wave radar, statistical features are combined with wavelet transform techniques. This combination enables the efficient classification of diverse road surface types and conditions. Firstly, the discriminability of radar echo signals corresponding to different road surface types is verified via statistical analysis. During this process, six-dimensional statistical features that display remarkable differences are extracted. Subsequently, a novel radar data reconstruction approach is presented. This method involves fitting discrete echo signals into coordinate curves. Then, discrete wavelet transform is utilized to extract both low-frequency and high-frequency features, thereby strengthening the spatio-temporal correlation of the signals. The low-frequency information serves to capture general characteristics, whereas the high-frequency information reflects detailed features. The statistical features and wavelet transform features are fused at the feature level, culminating in the formation of a 56-dimensional feature vector. Four machine learning models, namely the Wide Neural Network (WNN), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Kernel methods, are employed as classifiers for both training and testing purposes. Experiments were executed with 8865 samples obtained from a real-vehicle platform. These samples comprehensively represented 12 typical road surface types and conditions. The experimental outcomes clearly indicate that the proposed method is capable of attaining a road surface type identification accuracy as high as 94.2%. As a result, it furnishes an efficient and cost-efficient road perception solution for intelligent driving systems. This research validates the potential application of millimeter-wave radar in intricate road environments and offers both theoretical underpinning and practical support for the advancement of autonomous driving technology.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.