An Enhanced Cascaded Deep Learning Framework for Multi-Cell Voltage Forecasting and State of Charge Estimation in Electric Vehicle Batteries Using LSTM Networks.
{"title":"An Enhanced Cascaded Deep Learning Framework for Multi-Cell Voltage Forecasting and State of Charge Estimation in Electric Vehicle Batteries Using LSTM Networks.","authors":"Supavee Pourbunthidkul, Narawit Pahaisuk, Popphon Laon, Nongluck Houngkamhang, Pattarapong Phasukkit","doi":"10.3390/s25123788","DOIUrl":null,"url":null,"abstract":"<p><p>Enhanced Battery Management Systems (BMS) are essential for improving operational efficacy and safety within Electric Vehicles (EVs), especially in tropical climates where traditional systems encounter considerable performance constraints. This research introduces a novel two-tiered deep learning framework that utilizes a two-stage Long Short-Term Memory (LSTM) framework for precise prediction of battery voltage and SoC. The first tier employs LSTM-1 forecasts individual cell voltages across a full-scale 120-cell Lithium Iron Phosphate (LFP) battery pack using multivariate time-series data, including voltage history, vehicle speed, current, temperature, and load metrics, derived from dynamometer testing. Experiments simulate real-world urban driving, with speeds from 6 km/h to 40 km/h and load variations of 0, 10, and 20%. The second tier uses LSTM-2 for SoC estimation, designed to handle temperature-dependent voltage fluctuations in high-temperature environments. This cascade design allows the system to capture complex temporal and inter-cell dependencies, making it especially effective under high-temperature and variable-load environments. Empirical validation demonstrates a 15% improvement in SoC estimation accuracy over traditional methods under real-world driving conditions. This study marks the first deep learning-based BMS optimization validated in tropical climates, setting a new benchmark for EV battery management in similar regions. The framework's performance enhances EV reliability, supporting the growing electric mobility sector.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12196766/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25123788","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Enhanced Battery Management Systems (BMS) are essential for improving operational efficacy and safety within Electric Vehicles (EVs), especially in tropical climates where traditional systems encounter considerable performance constraints. This research introduces a novel two-tiered deep learning framework that utilizes a two-stage Long Short-Term Memory (LSTM) framework for precise prediction of battery voltage and SoC. The first tier employs LSTM-1 forecasts individual cell voltages across a full-scale 120-cell Lithium Iron Phosphate (LFP) battery pack using multivariate time-series data, including voltage history, vehicle speed, current, temperature, and load metrics, derived from dynamometer testing. Experiments simulate real-world urban driving, with speeds from 6 km/h to 40 km/h and load variations of 0, 10, and 20%. The second tier uses LSTM-2 for SoC estimation, designed to handle temperature-dependent voltage fluctuations in high-temperature environments. This cascade design allows the system to capture complex temporal and inter-cell dependencies, making it especially effective under high-temperature and variable-load environments. Empirical validation demonstrates a 15% improvement in SoC estimation accuracy over traditional methods under real-world driving conditions. This study marks the first deep learning-based BMS optimization validated in tropical climates, setting a new benchmark for EV battery management in similar regions. The framework's performance enhances EV reliability, supporting the growing electric mobility sector.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.