Adaptive Model Predictive Control for 4WD-4WS Mobile Robot: A Multivariate Gaussian Mixture Model-Ant Colony Optimization for Robust Trajectory Tracking and Obstacle Avoidance.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-06-18 DOI:10.3390/s25123805
Hayat Ait Dahmad, Hassan Ayad, Alfonso García Cerezo, Hajar Mousannif
{"title":"Adaptive Model Predictive Control for 4WD-4WS Mobile Robot: A Multivariate Gaussian Mixture Model-Ant Colony Optimization for Robust Trajectory Tracking and Obstacle Avoidance.","authors":"Hayat Ait Dahmad, Hassan Ayad, Alfonso García Cerezo, Hajar Mousannif","doi":"10.3390/s25123805","DOIUrl":null,"url":null,"abstract":"<p><p>Trajectory tracking is a crucial task for autonomous mobile robots, requiring smooth and safe execution in dynamic environments. This study uses a nonlinear model predictive controller (MPC) to ensure accurate trajectory tracking of a four-wheel drive, four-wheel steer (4WD-4WS) mobile robot. However, the MPC's performance depends on the optimal tuning of its key parameters, a challenge addressed using the Multivariate Gaussian Mixture Model Continuous Ant Colony Optimization (MGMM-ACOR) algorithm. This method improves on the classic ACOR algorithm by overcoming two major limitations: the lack of consideration for interdependencies between optimized variables, and an inadequate balance between global exploration and local exploitation. The proposed approach is validated by a two-phase evaluation. Firstly, benchmark function evaluations demonstrate its superiority over established optimization algorithms, including ACO, ACOR, and PSO and its variants, in terms of convergence speed and solution accuracy. Secondly, MGMM-ACOR is integrated into the MPC framework and tested in various scenarios, including trajectory tracking with circular and eight trajectories and dynamic obstacle avoidance during trajectory tracking. The results, evaluated based on trajectory error, control effort, and computational latency, confirm the robustness of the proposed method. In particular, the explicit modeling of correlations between variables in MGMM-ACOR guarantees stable, collision-free trajectory tracking, outperforming conventional ACOR-based approaches that optimize variables independently.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25123805","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Trajectory tracking is a crucial task for autonomous mobile robots, requiring smooth and safe execution in dynamic environments. This study uses a nonlinear model predictive controller (MPC) to ensure accurate trajectory tracking of a four-wheel drive, four-wheel steer (4WD-4WS) mobile robot. However, the MPC's performance depends on the optimal tuning of its key parameters, a challenge addressed using the Multivariate Gaussian Mixture Model Continuous Ant Colony Optimization (MGMM-ACOR) algorithm. This method improves on the classic ACOR algorithm by overcoming two major limitations: the lack of consideration for interdependencies between optimized variables, and an inadequate balance between global exploration and local exploitation. The proposed approach is validated by a two-phase evaluation. Firstly, benchmark function evaluations demonstrate its superiority over established optimization algorithms, including ACO, ACOR, and PSO and its variants, in terms of convergence speed and solution accuracy. Secondly, MGMM-ACOR is integrated into the MPC framework and tested in various scenarios, including trajectory tracking with circular and eight trajectories and dynamic obstacle avoidance during trajectory tracking. The results, evaluated based on trajectory error, control effort, and computational latency, confirm the robustness of the proposed method. In particular, the explicit modeling of correlations between variables in MGMM-ACOR guarantees stable, collision-free trajectory tracking, outperforming conventional ACOR-based approaches that optimize variables independently.

4WD-4WS移动机器人的自适应模型预测控制:基于多元高斯混合模型的鲁棒轨迹跟踪与避障蚁群优化。
轨迹跟踪是自主移动机器人的一项重要任务,需要在动态环境中平稳、安全地执行。本研究采用非线性模型预测控制器(MPC)来保证四轮驱动四轮转向(4WD-4WS)移动机器人的精确轨迹跟踪。然而,MPC的性能取决于其关键参数的最优调整,这是使用多元高斯混合模型连续蚁群优化(MGMM-ACOR)算法解决的一个挑战。该方法对经典ACOR算法进行了改进,克服了两个主要限制:缺乏对优化变量之间相互依赖关系的考虑,以及全局勘探和局部开发之间的平衡不足。通过两阶段评估验证了该方法的有效性。首先,通过对基准函数的评估,证明了该算法在收敛速度和求解精度方面优于已有的优化算法,包括蚁群算法、ACOR算法和粒子群算法及其变体。其次,将mmgm - acor集成到MPC框架中,并在各种场景下进行了测试,包括圆轨迹和八轨迹轨迹跟踪以及轨迹跟踪过程中的动态避障。基于轨迹误差、控制努力和计算延迟的评估结果证实了所提方法的鲁棒性。特别是,mmmm - acor中变量之间的显式相关性建模保证了稳定、无碰撞的轨迹跟踪,优于传统的基于acor的独立优化变量的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信