Janhavi Deshmukh, Kavish Sanil, Achref Cherif, Eman A Ashour
{"title":"Development of fenofibrate solid dispersion via hot melt extrusion and 3D printing technologies.","authors":"Janhavi Deshmukh, Kavish Sanil, Achref Cherif, Eman A Ashour","doi":"10.1080/10837450.2025.2522802","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to develop an amorphous solid dispersion (ASD) of fenofibrate using Hot Melt Extrusion (HME) and 3D printing to evaluate the impact of preparation methods on ASD properties. Fenofibrate (10% w/w) was processed with Soluplus<sup>®</sup> and Polyethylene oxide-N80 to produce HME filaments. These filaments were either used as feedstock for Fused Deposition Modeling (FDM) 3D printing to fabricate tablets with 90%, 70%, and 50% infill densities or milled and filled into gelatin capsules. Printability was assessed <i>via</i> a three-point bend test. The fenofibrate formulations were evaluated for drug content, physical state, surface morphology, and release profile. The SEM images of pure fenofibrate showed large cylindrical crystals while the 3D-printed tablets showed a smooth surface with no record of any crystals. This observation is in line with the DSC results and confirms the conversion of fenofibrate from crystalline to an amorphous state. The <i>in- vitro</i> drug release for the 3D printed tablets and capsules was increased 2-fold as compared to pure fenofibrate. Statistical comparisons further supported these findings, highlighting infill density as a tunable parameter for modulating release kinetics.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-11"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2025.2522802","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to develop an amorphous solid dispersion (ASD) of fenofibrate using Hot Melt Extrusion (HME) and 3D printing to evaluate the impact of preparation methods on ASD properties. Fenofibrate (10% w/w) was processed with Soluplus® and Polyethylene oxide-N80 to produce HME filaments. These filaments were either used as feedstock for Fused Deposition Modeling (FDM) 3D printing to fabricate tablets with 90%, 70%, and 50% infill densities or milled and filled into gelatin capsules. Printability was assessed via a three-point bend test. The fenofibrate formulations were evaluated for drug content, physical state, surface morphology, and release profile. The SEM images of pure fenofibrate showed large cylindrical crystals while the 3D-printed tablets showed a smooth surface with no record of any crystals. This observation is in line with the DSC results and confirms the conversion of fenofibrate from crystalline to an amorphous state. The in- vitro drug release for the 3D printed tablets and capsules was increased 2-fold as compared to pure fenofibrate. Statistical comparisons further supported these findings, highlighting infill density as a tunable parameter for modulating release kinetics.
期刊介绍:
Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology.
Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as:
-Preformulation and pharmaceutical formulation studies
-Pharmaceutical materials selection and characterization
-Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation
-QbD in the form a risk assessment and DoE driven approaches
-Design of dosage forms and drug delivery systems
-Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies
-Drug delivery systems research and quality improvement
-Pharmaceutical regulatory affairs
This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.